PROBLEM OF THE WEEK

 Solution of Problem No. 1 (Spring 2003 Series)Problem: Show that the binary number $t=.111 \cdots 1$ with 2003 1's satisfies $.99 \cdots 9<$ $t<.99 \cdots 9$ where the lower bound has 602 decimal digits 9 and the upper bound has 603 decimal digits 9 .

Solution (by Jason Andersson, Soph. Math.)

$$
\begin{aligned}
& 0.301<\log _{10} 2<0.30103, \text { hence } \\
& 602<2003 \log _{10} 2<603, \text { thus } \\
& 10^{602}<2^{2003}<10^{603} \text { and } \\
& 1-10^{-602}<1-2^{-2003}<1-10^{-603}, \text { or } \\
& \underbrace{0.999 \cdots 9}_{602}<\underbrace{0.111 \cdots 1}_{2003})_{2}<\underbrace{0.999 \cdots 9}_{603}
\end{aligned}
$$

Also solved by:
Undergraduates: Nitin Kumar Rathi (Fr. Engr), Yen Hock Tan (Fr. CS)
Graduates: Ali R. Butt (ECE), Ankur Jain (ChE), Thukaram Katare (ChE), Yifan Liang (EE), Ashish Rao (ECE), K. H. Sarma (NucE), Dharmashankar Subramanian (ChE), Qi Xu (ChE)

Faculty: Steven Landy (Physics at IUPUI)
Others: J.L.C. (Fishers, IN), Vijay Madhavapeddi (Newark, CA), Ramakrishnan Mallaci (ECE at U. Mass, Dartmouth), Namig Mammadov (Baku, Azerbaijan), Rob Pratt (UNC, Chapel Hill)

High School Michael Chuu Chang (Hamilton SE H.S.), Alex Miller (St. Anthony H.S., MN), Steve Taylor (Middletown H.S., OH)

