PROBLEM OF THE WEEK

Solution of Problem No. 6 (Spring 2003 Series)

Problem: Define the numbers e_{k} by $e_{0}=0, e_{k}=\exp \left(e_{k-1}\right)$ for $k \geq 1$. Determine the functions f_{k} for which

$$
f_{0}(x)=x, \quad f_{k}^{\prime}=\frac{1}{f_{k-1} f_{k-2} \cdots f_{0}} \quad \text { for } k \geq 1
$$

on the interval $\left[e_{k}, \infty\right)$, and all $f_{k}\left(e_{k}\right)=0$.

Solution (by Rob Pratt, Gr. U. North Carolina)

We show by induction that $f_{k}(x)=\ln ^{k} x$, the k-fold composition of \ln with itself. For $k=0$, we have $f_{0}(x)=x=\ln ^{0} x$. Now assume that $f_{k}(x)=\ln ^{k} x$ for some $k \geq 0$. Then

$$
f_{k+1}^{\prime}(x)=\frac{1}{f_{k}(x) f_{k-1}(x) \cdots f_{0}(x)}=\frac{f_{k}^{\prime}(x)}{f_{k}(x)}
$$

So

$$
f_{k+1}(x)=\int \frac{f_{k}^{\prime}(x)}{f_{k}(x)} d x=\ln f_{k}(x)+C=\ln \ln ^{k} x+C=\ln ^{k+1} x+C
$$

for some constant C. But

$$
0=f_{k+1}\left(e_{k+1}\right)=\ln ^{k+1} e_{k+1}+C=C .
$$

Hence $f_{k+1}(x)=\ln ^{k+1} x$, establishing the induction.

Also solved by:
Undergraduates: Neel Mehta (Fr. AAE), M. M. Ahmad Zabidi (Fr. Biol)
Graduates: Tom Engelsman (ECE), Amit Shirsat (CS), Qi Xu (ChE)
Others: J.L.C. (Fishers, IN), Marcio A. A. Cohen (Brazil), Namig Mammadov (Baku, Azerbaijan)

Three correct solutions to problem 5 were misfiled and not corrected last week. They are for Marcio A. A. Cohen (Eng, Brazil), Steven Landy (Phys at IUPUI), Yifan Liang (Gr. ECE).

