PROBLEM OF THE WEEK Solution of Problem No. 8 (Spring 2003 Series)

Problem: Prove that there is no 2×2 matrix S such that $S^r = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ for any integer $r \ge 2$.

Solution (by Chris Lomont, Gr. MA)

Suppose there is S and $r \ge 2$ such that $S^r = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Then $S^{2r} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. The characteristic polynomial for S is $x^2 + ax + b$, hence $(x^2 + ax + b)$ is a factor of x^{2r} . This implies a = b = 0, the characteristic polynomial of S is x^2 , so $S^2 = 0$ and $S^r = S^2 S^{r-2} = 0$, thus $S^r \neq \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

Also solved by:

<u>Undergraduates</u>: Jason Andersson (So. MA)

<u>Graduates</u>: Tom Engelsman (ECE)

Faculty: Steven Landy (Physics at IUPUI)

<u>Others</u>: J.L.C. (Fishers, IN), Yalangi Chandrasekhar (Camarillo, CA), Jim Hoffman (Vincennes U.), Jeff Hammerbacher (Ft. Wayne, IN)

Four incorrect solutions were received.

We found a correct solution for problem 5 by Jason Andersson. This has been entered in the book.