PROBLEM OF THE WEEK Solution of Problem No. 9 (Spring 2003 Series)

Problem: Let y(x) be a continuously differentiable real-valued function on \mathbb{R} . Show that, if $(y'(x))^2 + y^3(x) \to 0$ as $x \to +\infty$, then $y(x) \to 0$ as $x \to +\infty$.

Solution (by the Panel)

There are three cases to be considered.

- 1. Suppose y(x) changes sign at $x_n, x_n \to \infty$. Then y(x) has a maximum or minimum at $\xi_n, x_n < \xi_n < x_{n+1}, y'(\xi_n) = 0, |y(x)| \le |y(\xi_n)|$ for $x_n \le x \le x_{n+1}, |y(\xi_n)| \to 0, \therefore y(x) \to 0$.
- 2. y(x) does not change sign for $x \ge u$, say $y(x) \ge 0$ for $x \ge u$. Then $y(x) \to 0$ for $x \to \infty$.
- 3. $y(x) \leq 0$ for $x \geq u$. Set z = -y, then $(z')^2 z^3 \to 0$ and since $(z'^2 z^3)$ is arbitrarily small for sufficiently large x, z(x) differs arbitrarily little, for sufficiently large x, from w(x) for which $w'^2 - w^3 = 0$, or $(w' - w^{3/2})(w' + w^{3/2}) = 0$. If $w' + w^{3/2} \neq 0$ at some x, then $w' + w^{3/2} \neq 0$ on an interval I_1 , so $w' - w^{3/2} = 0$ on I_1 . If I is finite then there is an abutting interval I_2 on which $w' + w^{3/2} = 0$: $w(x) = (-\frac{1}{2}x + c_1)^{-2}$ on I_1 and $w(x) = -(\frac{1}{2}x + c_2)^{-2}$ on I_2 . Also $w'(x) = (-\frac{1}{2}x + c_1)^{-3}$ on $I_1, w'(x) = -(\frac{1}{2}x + c_2)^{-3}$ on I_2 . At the point x = a where I_1 and I_2 abut, we have $(-\frac{1}{2}a + c_1)^{-3} = -(\frac{1}{2}a + c_2)^{-3}$, hence $c_1 = -c_2$ and $w(x) = (\frac{1}{2}x + c)^{-2}$ on $I_1 \cup I_2$. It follows that $w(x) = (\frac{1}{2}x + c)^{-2}$ for all x, hence $w(x) \to 0, z(x) \to 0$, $y(x) \to 0$.

There was no correct solution, only two incorrect solutions.