PROBLEM OF THE WEEK

Solution of Problem No. 10 (Spring 2003 Series)

Problem: Find the exact sum of the series $\frac{1}{1 \cdot 2 \cdot 3 \cdot 4}+\frac{1}{5 \cdot 6 \cdot 7 \cdot 8}+\cdots$.

Solution (by Tom Engelsman, Grad ECE, modified by the Panel)
$\frac{1}{(4 n+1)(4 n+2)(4 n+3)(4 n+4)}=\int_{0}^{1} \int_{0}^{x} \int_{0}^{x_{1}} \int_{0}^{x_{2}} x_{3}^{4 n} d x_{3} d x_{2} d x_{1} d x=\frac{1}{6} \int_{0}^{1}(1-x)^{3} x^{4 n} d x$.
Hence

$$
S=\frac{1}{6} \int_{0}^{1} \frac{(1-x)^{3}}{1-x^{4}} d x=\frac{1}{6} \int_{0}^{1} \frac{(1-x)^{2}}{(1+x)\left(1+x^{2}\right)} d x
$$

which decomposes to

$$
\frac{1}{6} \int_{0}^{1}\left(-\frac{x+1}{1+x^{2}}+\frac{2}{1+x}\right) d y
$$

Integrating gives

$$
\begin{gathered}
\frac{1}{6}\left[2 \ln (1+x)-\frac{1}{2} \ln \left(1+x^{2}\right)-\tan ^{-1} x\right]_{0}^{1} \\
=\frac{1}{6}\left[2 \ln 2-\frac{1}{2} \ln 2-\frac{\pi}{4}\right]=\frac{1}{6}\left(\frac{3}{2} \ln 2-\frac{\pi}{4}\right)=\frac{1}{4} \ln 2-\frac{\pi}{24} .
\end{gathered}
$$

Also solved by:
Graduates: Chris Lomont (MA)
Faculty: Steven Landy (Physics at IUPUI)
Others: J.L.C. (Fishers, IN), Namig Mammadov (Baku, Azerbaijan), Vivek Mehra (Mumbai U., India), Rob Pratt (UNC, Chapel Hill), Regis J. Serinko (PhD, State Coll., PA)

