
PROBLEM OF THE WEEK

Solution of Problem No. 11 (Spring 2003 Series)

Problem: A point P is chosen at random with respect to the uniform distribution in an

equilateral triangle T . What is the probability that there is a point Q in T whose distance

from P is larger than the altitude of T? (The answer can be found without integration.)

Solution (by the Panel)

Let AOB be the vertices of T , M the midpoint of OB, C the orthocenter of T , and R the

intersection of the altitude of AB (say of length h) and the circle with center A and radius

AM . The sought probability is
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if 1 is the length of the side of T .

On taking origin at O, positive x-axis along OB, and positive y-axis through O in the

direction of MA, the coordinates x, y of Q satisfy

y =
x

3

√
3, (x− 1

2
)2 + (y − 1

2

√
3)2 =

3

4
.

One finds x = 3
4 −

1
4

√
6, y = 1

4

√
3− 1

4

√
2.

Now |ORM | = |OCM | − |RCM | = |OCM | − (|RAM | − |RAC|),
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Hence
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Also solved by:

Graduates: Michael Igarta (ECE)

Others: Regis J. Serinko (PhD, State Coll., PA)

One incorrect solution was received.


