PROBLEM OF THE WEEK

Solution of Problem No. 13 (Spring 2003 Series)

Problem: A given triangle T contains a point P in its interior. Let A, B, C be points one on each side of T.
a) Show that $|P A|+|P B|+|P C| \geq h$, where h is the length of the shortest altitude of T.
b) Show that equality in the above is attained if and only if T is equilateral and $P A, P B, P C$ are orthogonal to their respective sides.

Solution (Yifan Liang, Gr. ECE)
a) Assume $T=\triangle A_{0} B_{0} C_{0},\left|A_{0} B_{0}\right| \geq\left|B_{0} C_{0}\right| \geq\left|C_{0} A_{0}\right|$. The area of T is

$$
\begin{aligned}
S_{T} & =\frac{1}{2}\left|A_{0} B_{0}\right| \cdot h \\
& =S_{\triangle A_{0} B_{0} P}+S_{\triangle B_{0} C_{0} P}+S_{\triangle C_{0} A_{0} P} \\
& \leq \frac{1}{2}\left|A_{0} B_{0}\right| \cdot|P C|+\frac{1}{2}\left|B_{0} C_{0}\right| \cdot|P A|+\frac{1}{2}\left|C_{0} A_{0}\right| \cdot|P B| \\
& \leq \frac{1}{2}\left|A_{0} B_{0}\right|(|P C|+|P A|+|P B|),
\end{aligned}
$$

hence $|P A|+|P B|+|P C| \geq h$.
b) The first equality above is attained if and only if

$$
P A \perp B_{0} C_{0}, P B \perp A_{0} C_{0} P C \perp A_{0} B_{0}
$$

The second equality holds if and only if

$$
\left|A_{0} B_{0}\right|=\left|B_{0} C_{0}\right|=\left|C_{0} A_{0}\right| .
$$

Also solved by:
Graduates: Amit Shirsat (CS)
Faculty: Steven Landy (Physics at IUPUI)
Others: Namig Mammadov (Baku, Azerbaijan), Regis J. Serinko (PhD, State Coll., PA)

