PROBLEM OF THE WEEK

Solution of Problem No. 14 (Spring 2003 Series)

Problem: Determine the complex-valued functions $f(x)$ which have power series expansions that converge near 0 and which satisfy $2 f^{2}(x)-f(2 x)=1$ inside the circle of convergence.

Solution (by The Panel)
We are given that $f(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots+\frac{f^{(n)}(0)}{n!} x^{n}+\cdots$. From $2(f(0))^{2}-$ $f(0)-1=0$ we find that $f(0)$ can be $-\frac{1}{2}$ or 1 .

By mathematical induction we can show:

$$
\begin{equation*}
\frac{d^{m}}{d x^{m}}[g(x) \cdot h(x)]=\sum_{k=0}^{m}\binom{m}{k} g^{(k)}(x) h^{(m-k)}(x) \tag{1}
\end{equation*}
$$

Taking the m 'th derivative of $2(f(x))^{2}-f(2 x)-1=0$ for $m \geq 1$

$$
2 \sum_{k=0}^{m} f^{(k)}(x) f^{(m-k)}(x)-2^{m} f^{(m)}(x)=0 .
$$

For $x=0,4 f(0) f^{(m)}(0)+2 \sum_{k=1}^{m-1} f^{(k)}(0) f^{(m-k)}(0)-2^{m} f^{(m)}(x)=0$.
This gives a recursion formula for $f^{(m)}(0)$.

$$
\begin{equation*}
\left(2^{m}-4 f(0)\right) f^{(m)}(0)=2 \sum_{k=1}^{m-1}\binom{m}{k} f^{(k)}(0) f^{m-k}(0) \tag{2}
\end{equation*}
$$

For $m=1$ the sum on the right side vanishes, being void, so $\left(2-4 f(0) \mid f^{\prime}(0)=0\right.$ which, for either value of $f(0)$ gives $f^{\prime}(0)=0$.

For $m=2,(4-4 f(0)) f^{\prime \prime}(0)=2\left(f^{\prime}(0)\right)^{2}=0$. For $f(0)=-\frac{1}{2}$ this gives $f^{\prime \prime}(0)=0$ but for $f(0)=1, f^{\prime \prime}(0)$ can be any number, call it d.

Case $1 f(0)=-\frac{1}{2}$. From (2) $\left(2^{m}+2\right) f^{(m)}(0)=2 \sum_{k=1}^{m-1}\binom{m}{k} f^{(k)}(0) f^{(m-k)}(0)$. If $f^{(k)}(0)=0$ for $k=1,2, \cdots(m-1)$ (when $m \geq 1$), the right side of (2) is zero so $f^{(m)}(0)=$ 0 . Since $f^{\prime}(0)=0$ mathematical induction shows that $f^{m}(0)=0$ for $m \geq 1$. Thus $f(x)=f(0)=-\frac{1}{2}$.

Case $2 f(0)=1$. The right side of (2) for $m=3$ is $2 \cdot 3\left(f^{\prime}(0) f^{\prime \prime}(0)+f^{\prime \prime}(0) f^{\prime}(0)\right)=0$. Thus $\left(2^{3}-4\right) f^{(3)}(0)=0$ giving $f^{(3)}(0)=0$. If $f^{(k)}(0)=0 k=1,3, \cdots, 2 r-1$, then
$\left(2^{2 r+1}-4\right) f^{(2 r+1)}(0)=2 \sum_{k=1}^{2 r}\binom{2 r+l}{k} f^{(k)}(0) f^{(2 r+1-k)}(0)$. On the right each produce has an odd and an even derivative and is, thus, 0 . This shows $f^{(2 r+1)}(0)=0$ for all $r \geq 0$.

Writing out (2) for $m=2 r$

$$
2\left(2^{2(r-1)}-1\right) f^{(2 r)}(0)=\sum_{k=1}^{m-1}\binom{2 r}{k} f^{(k)}(0)
$$

The odd numbered terms on the right have products of odd derivatives and therefore vanish leaving

$$
2\left(2^{2(r-1)}-1\right) f^{(2 r)}(0)=\sum_{j=1}^{r-1}\binom{2 r}{2 j} f^{(2 j)}(0) f^{(2 r-2 j)}(0)
$$

For $r=2$ we calculate $f^{(4)}(0)=d^{2}$ nd for $r=3, f^{(6)}(0)=d^{3}$. With the induction hypothesis that $f^{(2 k)}(0)=d^{k}$ for $k=1,2, \cdots, r-1,2\left(2^{2(r-1)}-1\right) f^{2 r}(0)=\left[\sum_{j=1}^{r-1}\binom{2 r}{2 j}\right] d^{r}$.

The sum on the right may be found by evaluating $\frac{1}{2}\left[(1+t)^{2 r}-(1-t)^{2 r}\right]$ at $t=1$. From this mathematical induction shows $f^{(2 r)}(0)=d^{r}\left[2^{2 r}-\binom{2 r}{0}-\binom{2 r}{2 r}\right] / 2\left(2^{2(r-1)}-1\right)=d^{r}$ which gives

$$
f(x)=\sum_{k=0}^{\infty} \frac{d^{k}}{(2 k)!} x^{2 k}=\cosh (\sqrt{d} x)
$$

Solved by:
Graduates: Anandateertha Mangasuli (MA)
Faculty: Steven Landy (Physics at IUPUI)
Others: Rob Pratt (UNC, Chapel Hill)

