PROBLEM OF THE WEEK Solution of Problem No. 1 (Spring 2004 Series)

Problem: Determine the positive integers x < 10,000 for which both $2^x \equiv 88 \pmod{167}$ and $2^x \equiv 70 \pmod{83}$. (You may use a calculator which is not programmable.)

Solution (by the Panel)

We need some general preliminaries:

For any integer a > 1 and any prime p not dividing a, Fermat's ("little") theorem yields that the set of positive integer solutions x of

(1)
$$a^x \equiv 1 \pmod{p}$$

is of the form $\{x = kb : k = 1, 2, ...\}$ for some positive integer b which divides p - 1. [See e.g. Hardy & Wright, An Introduction to the Theory of Numbers, 5th edition, OUP 1985, p.63, Theorem 71.]

Next, for any positive integer c not divisible by p, consider the more general congruence

(2)
$$a^y \equiv c \pmod{p}.$$

If u and v are positive integers with u < v and if y = u and y = v both satisfy (2), then

$$c(a^{v-u}-1) \equiv a^u(a^{v-u}-1) = a^v - a^u \equiv 0 \pmod{p},$$

whence (since p does not divide c) in fact $a^{v-u} \equiv 1 \pmod{p}$, i.e. x = v - u satisfies (1), so that v - u = kb for some k. Hence, if y = u is the smallest positive integer solution of (2), then the set of all positive integer solutions y of (2) has the form

$$\{y = u + kb; k = 0, 1, 2, \dots\}.$$

We now apply the generalities above to the case where a = 2 and p, c are given either by $(p_1, c_1) = (167, 88)$ or by $(p_2, c_2) = (83, 70)$.

To calculate the corresponding $(b_j, u_j)(j = 1, 2)$ we first look at the positive divisors of $p_j - 1$. For j = 1, $p_1 - 1 = 166$ has only the divisors 1, 2, 83, 166, of which clearly neither x = 1 nor x = 2 satisfies (1), but one verifies easily that $2^{83} \equiv 1 \pmod{167}$, and so $b_1 = 83$. To find the smallest solution $y = u_1$ of $2^y \equiv 88 \pmod{167}$, we test $y = 1, 2, \ldots$ in turn and find that $2^{12} \equiv 88$, i.e. $(b_1, u_1) = (83, 12)$. Similarly, $(b_2, u_2) = (82, 36)$.

It follows that any simultaneous solution x of both $2^x \equiv 88 \pmod{167}$ and $2^x \equiv 70 \pmod{83}$ must be simultaneously of the forms $x = u_1 + k_1 b_1$, $x = u_2 + k_2 b_2$, so that

$$83k_1 - 82k_2 = u_2 - u_1 = 24,$$

whence $(k_1, k_2) = (34 + 82r, 24 + 83r)$ for some integer r, which yields $x = u_1 + k_1 b_1 = 12 + 83k_1 = 2004 + 6806r$. For 0 < x < 10,000, we must take r = 0 or 1, i.e. x = 2004 or 8810.

Solved by:

Undergraduates: Paris Miles-Brenden (Jr. Phys/MA), Adam Welborn (So. CS)

Graduates: Vikram Buddhi (MA), Jianguang Guo (Phys)

Faculty: Steven Landy (Phys, IUPUI)

<u>Others</u>: Prasenjeet Ghosh (New Delhi), Namig Mammadov (Baku, Azerbaijan), Troy Siemers (MA/CS, VMI, Lexington, VA), Christopher Smith (St. Cloud State, MN), Dharmashankar Subramanian (Chennai, India)

Anonymous: (by fax)

Two unacceptable solutions were received.