PROBLEM OF THE WEEK

Solution of Problem No. 1 (Spring 2004 Series)

Problem: Determine the positive integers $x<10,000$ for which both $2^{x} \equiv 88(\bmod 167)$ and $2^{x} \equiv 70(\bmod 83)$. (You may use a calculator which is not programmable.)

Solution (by the Panel)
We need some general preliminaries:
For any integer $a>1$ and any prime p not dividing a, Fermat's ("little") theorem yields that the set of positive integer solutions x of

$$
\begin{equation*}
a^{x} \equiv 1 \quad(\bmod p) \tag{1}
\end{equation*}
$$

is of the form $\{x=k b: k=1,2, \ldots\}$ for some positive integer b which divides $p-1$. [See e.g. Hardy \& Wright, An Introduction to the Theory of Numbers, 5th edition, OUP 1985, p.63, Theorem 71.]

Next, for any positive integer c not divisible by p, consider the more general congruence

$$
\begin{equation*}
a^{y} \equiv c \quad(\bmod p) \tag{2}
\end{equation*}
$$

If u and v are positive integers with $u<v$ and if $y=u$ and $y=v$ both satisfy (2), then

$$
c\left(a^{v-u}-1\right) \equiv a^{u}\left(a^{v-u}-1\right)=a^{v}-a^{u} \equiv 0 \quad(\bmod p),
$$

whence (since p does not divide c) in fact $a^{v-u} \equiv 1(\bmod p)$, i.e. $x=v-u$ satisfies (1), so that $v-u=k b$ for some k. Hence, if $y=u$ is the smallest positive integer solution of (2), then the set of all positive integer solutions y of (2) has the form

$$
\{y=u+k b ; k=0,1,2, \ldots\}
$$

We now apply the generalities above to the case where $a=2$ and p, c are given either by $\left(p_{1}, c_{1}\right)=(167,88)$ or by $\left(p_{2}, c_{2}\right)=(83,70)$.

To calculate the corresponding $\left(b_{j}, u_{j}\right)(j=1,2)$ we first look at the positive divisors of $p_{j}-1$. For $j=1, p_{1}-1=166$ has only the divisors $1,2,83,166$, of which clearly neither $x=1$ nor $x=2$ satisfies (1), but one verifies easily that $2^{83} \equiv 1(\bmod 167)$, and so $b_{1}=83$. To find the smallest solution $y=u_{1}$ of $2^{y} \equiv 88(\bmod 167)$, we test $y=1,2, \ldots$ in turn and find that $2^{12} \equiv 88$, i.e. $\left(b_{1}, u_{1}\right)=(83,12)$. Similarly, $\left(b_{2}, u_{2}\right)=(82,36)$.

It follows that any simultaneous solution x of both $2^{x} \equiv 88(\bmod 167)$ and $2^{x} \equiv 70$ $(\bmod 83)$ must be simultaneously of the forms $x=u_{1}+k_{1} b_{1}, x=u_{2}+k_{2} b_{2}$, so that

$$
83 k_{1}-82 k_{2}=u_{2}-u_{1}=24,
$$

whence $\left(k_{1}, k_{2}\right)=(34+82 r, 24+83 r)$ for some integer r, which yields $x=u_{1}+k_{1} b_{1}=$ $12+83 k_{1}=2004+6806 r$. For $0<x<10,000$, we must take $r=0$ or 1 , i.e. $x=2004$ or 8810.

Solved by:
Undergraduates: Paris Miles-Brenden (Jr. Phys/MA), Adam Welborn (So. CS)
Graduates: Vikram Buddhi (MA), Jianguang Guo (Phys)
Faculty: Steven Landy (Phys, IUPUI)
Others: Prasenjeet Ghosh (New Delhi), Namig Mammadov (Baku, Azerbaijan), Troy Siemers (MA/CS, VMI, Lexington, VA), Christopher Smith (St. Cloud State, MN), Dharmashankar Subramanian (Chennai, India)

Anonymous: (by fax)

Two unacceptable solutions were received.

