PROBLEM OF THE WEEK

 Solution of Problem No. 2 (Spring 2004 Series)Problem: Show that $x=\tan 18^{\circ}$ satisfies $5 x^{4}-10 x^{2}+1=0$.
Solution (by Prasenjeet Ghosh, New Delhi, India; former Purdue student)
Let $y=18^{\circ}$. Thus $5 y=90^{\circ}$. Now

$$
\begin{equation*}
\tan (5 y)=\frac{\tan (2 y)+\tan (3 y)}{1-\tan (2 y) \tan (3 y)} \tag{1}
\end{equation*}
$$

Since $\tan 5 y=\tan 90^{\circ}=\infty$, it follows that

$$
\begin{equation*}
1-\tan (2 y) \tan (3 y)=0 . \tag{2}
\end{equation*}
$$

Substituting for $\tan (2 y)$ and $\tan (3 y)$ in Equation (2) we get

$$
\begin{equation*}
\left(\frac{2 \tan (y)}{1-\tan ^{2} y}\right)\left(\frac{3 \tan (y)-\tan ^{3} y}{1-3 \tan ^{2} y}\right)=1 . \tag{3}
\end{equation*}
$$

Rearranging the algebra in Equation (3), we get

$$
\begin{equation*}
5 \tan ^{4} y-10 \tan ^{2} y+1=0 \tag{4}
\end{equation*}
$$

Thus $x=\tan y$ satisfies Equation (4) which is the required proof.

Also solved by:
Undergraduates: Manish Bajpai (Fr.), Trushal Chokshi (Jr. ECE), Kedar Hippalgaonkar (Jr. ME), Rajasekar Karthik (So. Sci), Akira Matsudaira (So. ECE), Paris Miles-Brenden (Jr. Phys/MA), Adam Welborn (So. CS)

Graduates: Jianguang Guo (Phys), Ashish Rao (ECE), K. H. Sarma (Nucl)
Faculty: Steven Landy (Phys, IUPUI)
Other: Georges Ghosn (Quebec), Will Hartzell (Sr. Warren Central H.S.), Namig Mammadov (Baku, Azerbaijan), Troy Siemers (MA/CS, VMI, Lexington, VA), Christopher Smith (St. Cloud State, MN)

Two unacceptable solutions were received.

