PROBLEM OF THE WEEK

Solution of Problem No. 3 (Spring 2004 Series)

Problem: Let D_{n} be the region below the hyperbola $y=1 / x$ for $1 \leq x \leq n$ and above the union of the rectangles with base $k \leq x \leq k+1$ and height $2 /(2 k+3)$ for $k=1, \cdots, n-1$. Determine $\lim _{n \rightarrow \infty}\left(\right.$ area of $\left.D_{n}\right)$.

Solution (by the Panel)

$$
\begin{aligned}
& D_{n}=\log n-2 \sum_{k=1}^{n-1} \frac{1}{2 k+3}, \\
& \text { where } \quad \begin{aligned}
2 \sum_{k=1}^{n-1} \frac{1}{2 k+3} & =\sum_{k=1}^{n} \frac{1}{k}-\left(2 \sum_{k=1}^{n} \frac{1}{2 k}-2 \sum_{k=1}^{n} \frac{1}{2 k+1}\right)-\frac{2}{3} \\
& =\sum_{k=1}^{n} \frac{1}{k}+2 \sum_{k=1}^{2 n+1}(-1)^{k-1} \frac{1}{k}-\frac{8}{3} . \\
\text { Hence } \lim _{n \rightarrow \infty} D_{n} & =\lim \left(\log n-\sum_{k=1}^{n} \frac{1}{k}\right)-2 \lim \left(1-\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2 n+1}\right)+\frac{8}{3} \\
& =\gamma+\frac{8}{3}-2 \log 2,
\end{aligned}, l
\end{aligned}
$$

where γ is Euler's constant.

Also solved by:
Undergraduates: Adam Welborn (So. CS)
Graduates: Jianguang Guo (Phys)
Faculty: Steven Landy (Phys, IUPUI)
Others: Georges Ghosn (Quebec), Jonathan Landy (Cal. Tech.)

Three unacceptable solutions were received.

We received late solutions of Problem 2 from: Jignesh Vidyut Mehta (Jr. Phys) and Sandeep Nandy (So. Eng.)

