
PROBLEM OF THE WEEK

Solution of Problem No. 3 (Spring 2004 Series)

Problem: Let Dn be the region below the hyperbola y = 1/x for 1 ≤ x ≤ n and above the

union of the rectangles with base k ≤ x ≤ k+ 1 and height 2/(2k+ 3) for k = 1, · · · , n−1.

Determine limn→∞ (area of Dn).

Solution (by the Panel)
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where γ is Euler’s constant.

Also solved by:

Undergraduates: Adam Welborn (So. CS)

Graduates: Jianguang Guo (Phys)

Faculty: Steven Landy (Phys, IUPUI)

Others: Georges Ghosn (Quebec), Jonathan Landy (Cal. Tech.)

Three unacceptable solutions were received.

We received late solutions of Problem 2 from: Jignesh Vidyut Mehta (Jr. Phys) and

Sandeep Nandy (So. Eng.)


