PROBLEM OF THE WEEK Solution of Problem No. 3 (Spring 2004 Series)

Problem: Let D_n be the region below the hyperbola y = 1/x for $1 \le x \le n$ and above the union of the rectangles with base $k \le x \le k+1$ and height 2/(2k+3) for $k = 1, \dots, n-1$. Determine $\lim_{n\to\infty} (\text{area of } D_n)$.

Solution (by the Panel)

$$D_n = \log n - 2\sum_{k=1}^{n-1} \frac{1}{2k+3},$$

where $2\sum_{k=1}^{n-1} \frac{1}{2k+3} = \sum_{k=1}^n \frac{1}{k} - (2\sum_{k=1}^n \frac{1}{2k} - 2\sum_{k=1}^n \frac{1}{2k+1}) - \frac{2}{3}$
 $= \sum_{k=1}^n \frac{1}{k} + 2\sum_{k=1}^{2n+1} (-1)^{k-1} \frac{1}{k} - \frac{8}{3}.$
Hence $\lim_{n \to \infty} D_n = \lim(\log n - \sum_{k=1}^n \frac{1}{k}) - 2\lim(1 - \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2n+1}) + \frac{8}{3}$
 $= \gamma + \frac{8}{3} - 2\log 2,$

where γ is Euler's constant.

Also solved by:

<u>Undergraduates</u>: Adam Welborn (So. CS)

<u>Graduates</u>: Jianguang Guo (Phys)

Faculty: Steven Landy (Phys, IUPUI)

Others: Georges Ghosn (Quebec), Jonathan Landy (Cal. Tech.)

Three unacceptable solutions were received.

We received late solutions of Problem 2 from: Jignesh Vidyut Mehta (Jr. Phys) and Sandeep Nandy (So. Eng.)