PROBLEM OF THE WEEK

 Solution of Problem No. 5 (Spring 2004 Series)Problem: What is the length of the day (the time between sunrise and sunset) at a place of latitude $42^{\circ} \mathrm{N}$ on a day when the sun's rays make an angle of 12° with the plane of the equator? (Simplifying assumptions are: the earth is a sphere, the sun's rays are parallel, and the 12° angle does not change during the day.)

Solution (by the Panel)
Let Θ° be the angle of the earth's turn, reckoned from the plane $y=0$. The normal vector to the earth at 42° is $\underline{n}:\left(\cos \Theta \cos 42^{\circ} ; \cos \Theta \sin 42^{\circ}, \sin \Theta\right)$, where we use spherical coordinates Θ for longitude, $\Phi=42^{\circ}$ for latitude. The unit vector in the direction of the sun's rays is $\underline{s}:\left(\cos 12^{\circ}, 0,-\sin 12^{\circ}\right)$. Sunset happens when $\underline{n} \cdot \underline{s}=0$, hence

$$
\begin{gathered}
\cos \Theta \cos 42 \cos 12-\sin 42 \sin 12=0, \quad \text { or } \\
\cos \Theta=\tan 42 \cdot \tan 12 .
\end{gathered}
$$

There are two solutions: Θ (sunset) and $360^{\circ}-\Theta$ (sunrise). The length of the day in hours is $\frac{1}{15}(360-2 \Theta)=24-2 \Theta / 15$. Now $\Theta=\cos ^{-1}(\tan 42 \cdot \tan 12)=78.97^{6}$. Length of day is $13.47 \mathrm{hrs}=13 \mathrm{hrs} 28 \mathrm{~min}$.

Also solved by:
Undergraduates: Noah Benson (Jr. Bio/CS/MA), Akira Matsudaira (So. ECE), Paris Miles-Brenden (Jr. Phys/MA), Adam Welborn (So. CS)

Graduates: Tom Engelsman (ECE)
Faculty: Jim Dobbin (Stat), Steven Landy (Phys, IUPUI)
Others: Georges Ghosn (Quebec)

Georges Ghosn (Quebec) was incorrectly graded on Problem 1. His name should have appeared as a solver. He also points out a misprint in the published solution of Problem 3. It should be $-7+\frac{8}{3}-2 \log 2$.

