PROBLEM OF THE WEEK

Solution of Problem No. 6 (Spring 2004 Series)

Problem: Show that $1-\frac{x}{3}<\frac{\sin x}{x}<1.1-\frac{x}{4}$ for $0<x \leq \pi$.
Solution (by Georges Ghosn, Quebec, edited by the Panel)
a) Let

$$
\begin{aligned}
f(x) & =\sin x-x+\frac{x^{2}}{3}, \quad \text { so } \\
f^{\prime}(x) & =\cos x-1+\frac{2 x}{3} \quad \text { and } \\
f^{\prime \prime}(x) & =-\sin x+\frac{2}{3}
\end{aligned}
$$

$f^{\prime \prime}(x)>0$ except for $a<x<b$ where $\sin a=\sin b=\frac{2}{3}$ and $a<\frac{\pi}{2}<b$. Thus $f^{\prime}(x)$ increases from 0 to a maximum at $x=a$, then decreases to a minimum at $x=b$, and then increases from b to π. The minimum value is $f^{\prime}(b)=\cos b-1+\frac{2 b}{3}>\frac{(\sqrt{5})}{3}-1+\frac{\pi}{3}>0$. From this $f^{\prime}(x) \geq 0$ for $0 \leq x \leq \pi$ and consequently $f(x)$ increases from 0 to $\pi\left(\frac{\pi}{3}-1\right)$ and $\sin x \geq x-\frac{x^{2}}{3}$.
b) Let

$$
\begin{aligned}
g(x) & =\sin x-1.1 x+\frac{x^{2}}{4}, \quad \text { so } \\
g^{\prime}(x) & =\cos x-1.1+\frac{x}{2} \quad \text { and } \\
g^{\prime \prime}(x) & =-\sin x+\frac{1}{2}
\end{aligned}
$$

As in a) $g^{\prime \prime}(x) \geq 0$ except for $\frac{\pi}{6}<x<\frac{5 \pi}{6}$ where $g^{\prime \prime}(x)<0$. So $g^{\prime}(x)$ increases from a value of -1.1 to a maximum of $\cos \frac{\pi}{6}-1.1+\frac{\pi}{12}>0$. It must be zero at a point, $x=\alpha\left(0 \leq \alpha \leq \frac{\pi}{6}\right)$. Similarly $g^{\prime}(\beta)=0$ for $\frac{\pi}{6} \leq \beta \leq \frac{5 \pi}{6}$. Note that $g^{\prime}\left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}-1.1+\frac{\pi}{8}>0$ and $g^{\prime}\left(\frac{3 \pi}{4}\right)=\frac{-\sqrt{2}}{2}-$ $1.1+\frac{3 \pi}{8}<0$, so $\frac{\pi}{4}<\beta<\frac{3 \pi}{4}$. Then from $0, g(x)$ decreases to a minimum at $x=\alpha$, then increases to a maximum value at $x=\beta ; g^{\prime}(\beta)=0=\cos \beta-1.1+\frac{\beta}{2}$, or $\beta=2(1.1-\cos \beta)$. Thus $g(\beta)=\sin \beta-1.1 \beta+\frac{\beta^{2}}{4}=\sin \beta+\cos ^{2} \beta-(1.1)^{2}=(.03-\sin \beta)(\sin \beta-0.7)<0$ since $\sin \beta \geq \frac{\sqrt{2}}{2}$. From this $g(x)=\sin x-1.1+\frac{x^{2}}{4} \leq 0$ for $0 \leq x \leq \pi$.

Also solved by:
Undergraduates: Akira Matsudaira (So. ECE)
Faculty: Steven Landy (Phys, IUPUI)
Others: Angel Plaza (ULPGC, Spain)

