PROBLEM OF THE WEEK Solution of Problem No. 6 (Spring 2004 Series)

Problem: Show that $1 - \frac{x}{3} < \frac{\sin x}{x} < 1.1 - \frac{x}{4}$ for $0 < x \le \pi$. Solution (by Georges Ghosn, Quebec, edited by the Panel) a) Let

$$f(x) = \sin x - x + \frac{x^2}{3}$$
, so
 $f'(x) = \cos x - 1 + \frac{2x}{3}$ and
 $f''(x) = -\sin x + \frac{2}{3}$.

f''(x) > 0 except for a < x < b where $\sin a = \sin b = \frac{2}{3}$ and $a < \frac{\pi}{2} < b$. Thus f'(x) increases from 0 to a maximum at x = a, then decreases to a minimum at x = b, and then increases from b to π . The minimum value is $f'(b) = \cos b - 1 + \frac{2b}{3} > \frac{(\sqrt{5})}{3} - 1 + \frac{\pi}{3} > 0$. From this $f'(x) \ge 0$ for $0 \le x \le \pi$ and consequently f(x) increases from 0 to $\pi(\frac{\pi}{3}-1)$ and $\sin x \ge x - \frac{x^2}{3}$.

b) Let

$$g(x) = \sin x - 1.1x + \frac{x^2}{4}$$
, so
 $g'(x) = \cos x - 1.1 + \frac{x}{2}$ and
 $g''(x) = -\sin x + \frac{1}{2}$.

As in a) $g''(x) \ge 0$ except for $\frac{\pi}{6} < x < \frac{5\pi}{6}$ where g''(x) < 0. So g'(x) increases from a value of -1.1 to a maximum of $\cos \frac{\pi}{6} - 1.1 + \frac{\pi}{12} > 0$. It must be zero at a point, $x = \alpha(0 \le \alpha \le \frac{\pi}{6})$. Similarly $g'(\beta) = 0$ for $\frac{\pi}{6} \le \beta \le \frac{5\pi}{6}$. Note that $g'(\frac{\pi}{4}) = \frac{\sqrt{2}}{2} - 1.1 + \frac{\pi}{8} > 0$ and $g'(\frac{3\pi}{4}) = \frac{-\sqrt{2}}{2} - 1.1 + \frac{3\pi}{8} < 0$, so $\frac{\pi}{4} < \beta < \frac{3\pi}{4}$. Then from 0, g(x) decreases to a minimum at $x = \alpha$, then increases to a maximum value at $x = \beta$; $g'(\beta) = 0 = \cos \beta - 1.1 + \frac{\beta}{2}$, or $\beta = 2(1.1 - \cos \beta)$. Thus $g(\beta) = \sin \beta - 1.1\beta + \frac{\beta^2}{4} = \sin \beta + \cos^2 \beta - (1.1)^2 = (.03 - \sin \beta)(\sin \beta - 0.7) < 0$ since $\sin \beta \ge \frac{\sqrt{2}}{2}$. From this $g(x) = \sin x - 1.1 + \frac{x^2}{4} \le 0$ for $0 \le x \le \pi$.

Also solved by:

<u>Undergraduates</u>: Akira Matsudaira (So. ECE)

(

Faculty: Steven Landy (Phys, IUPUI)

Others: Angel Plaza (ULPGC, Spain)