
PROBLEM OF THE WEEK

Solution of Problem No. 10 (Spring 2004 Series)

Problem: Prove the identity
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Solution (by A. Plaza & M.A. Padron, Faculty ULPGC, Spain)

The proof is divided in three parts:
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This can be easily proved by induction:

For N = 0, we get f(0) = f(0). Suppose that equation (1) holds for N − 1:
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Then, for index N we obtain:
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Second, based on equation (1), we get:
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Third:
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NOTE: The equation of the problem may be extended to a finite number of nested sums.

Also solved by:

Graduates: Tom Engelsman (ECE), Sridhar Maddipati (ChE), Ruchir Saheba (A&AE)

Faculty: Steven Landy (Phys, IUPUI)

Others: Georges Ghosn (Quebec), Rob Pratt (Chapel Hill, NC), Mordechai Michael Rap-

paport (Staff, Worcester Yeshiva Acad.),


