PROBLEM OF THE WEEK

Solution of Problem No. 1 (Spring 2005 Series)

Problem: Suppose b and c are real numbers randomly chosen in the interval $[0,1]$. What is the probability that the distance in the complex plane between the two roots of the equation $z^{2}+b z+c=0$ is not greater than 1 ?

Solution (by Georges Ghosn, Quebec, edited by the Panel)
The distance between the 2 roots, which is equal to $\sqrt{|\triangle|}=\sqrt{\left|b^{2}-4 c\right|}$, is not greater than 1 if and only if $-1 \leq b^{2}-4 c \leq 1$. That means that the point $M(b, c)$ lies on the intersection of the region in between the 2 parabolas $y=\frac{x^{2}-1}{4}$ and $y=\frac{x^{2}+1}{4}$ and the square delimited by $x=0, x=1, y=0, y=1$.
The probability is equal to the area of this region, which is $\int_{0}^{1} \frac{x^{2}+1}{4} d x=\frac{1}{3}$, over the area of the square which is equal to 1 . Consequently the probability is equal to $\frac{1}{3}$.

Also solved by:
Undergraduates: Jason Anema (Sr. MA), Alan Bernstein, Chris Giznopoulous (Fr.)
Graduates: Ashish Rao (ECE)
Others: Bhilahari Jeevanesan (Germany), Carol Kupier (Instructor, Purdue), Steven Landy (IUPUI), Sok-Joon Lee (HS student, DE), A. Plaza (ULPGC, Spain), Gabriel Vrinceanu (Bucharest)

