PROBLEM OF THE WEEK

Solution of Problem No. 3 (Spring 2005 Series)

Problem:

(a) Show that the number of ways in which an odd positive integer n can be written as a sum of two or more consecutive positive integers is equal to the number of divisors d of $2 n$ such that $1<d<\sqrt{2 n}$.
(b) Give all these sums for $n=45$.

Solution (by Georges Ghosn, Quebec, edited by the Panel)
Notice first, that each such sum is uniquely determined by the number d of its terms.
(a) (i) Let's show first that if n can be written as a sum of $d(d>1)$ consecutive positive integers then d is divisor of $2 n$ and $1<d<\sqrt{2 n}$.
Indeed $n=m+(m+1)+\cdots+(m+d-1)$ where $m>0$
$\Longleftrightarrow n=m d+\frac{d(d-1)}{2} \Longleftrightarrow 2 n=d(2 m+d-1) \Rightarrow d$ is a divisor of $2 n$ but

$$
\begin{aligned}
2 m-1>0 & \Rightarrow d^{2}<d(2 m+d-1)=2 n \\
& \Rightarrow d<\sqrt{2 n}
\end{aligned}
$$

(ii) Let's show now that if d is a divisor of $2 n$ and $1<d<\sqrt{2 n}$ then there is a unique $m>0$ so that $n=m+(m+1)+\cdots+(m+d-1)$. Indeed $2 n=d \times k$ but $d<\sqrt{2 n} \Rightarrow k>\sqrt{2 n}>d$

$$
2 n=d \times k=d(2 m+d-1) \Rightarrow 2 m=k-(d-1)
$$

but n is odd $\Rightarrow d$ and k don't have the same parity
$\Rightarrow(d-1)$ and k have the same parity
$\Rightarrow \quad m=\frac{k-(d-1)}{2}>0$ is an integer, and is unique.
Consequently the 2 sets have the same number of elements.
(b) $n=45 \quad$ the divisors of $2 n=90 \quad d$ and $1<d \leq 9$ are $\quad d=2,3,5,6,9$.

$$
\begin{aligned}
45 & =22+23 \quad(m=22, \quad d=2) \\
& =14+15+16 \quad(m=14, \quad d=3) \\
& =7+8+9+10+11 \quad(m=7, \quad d=5) \\
& =5+6+7+8+9+10 \quad(m=5, \quad d=6) \\
& =1+2+3+4+5+6+7+8+9 \quad(m=1, \quad d=9)
\end{aligned}
$$

Also solved by:
Undergraduates: Jason Anema (Sr. MA)

Others: Aaditya Muthukumaran (Chennai, India), A. Plaza (ULPGC, Spain), Steve Spindler

