PROBLEM OF THE WEEK
Solution of Problem No. 4 (Spring 2005 Series)

Problem: Let hy, hy, hs be the altitudes of a triangle, and let p be the radius of its
inscribed circle. Find the minimum of

hi1 4+ ha + hs
p

over all triangles.

Solution (by Daniel Vacaru, Pitesti, Romania; edited by the Panel)
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Let S be the area, and a, b, ¢, be the sides. We have h; = —S, hy = TS, hs = —S
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Also, we have p = —, where 2p = a + b + c¢. Therefore,
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Therefore, the minimum is 9. The triangle for which the minimum is attained is the
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Then, since a + — > 2, we have >
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equilateral triangle.
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