
PROBLEM OF THE WEEK

Solution of Problem No. 4 (Spring 2005 Series)

Problem: Let h1, h2, h3 be the altitudes of a triangle, and let ρ be the radius of its

inscribed circle. Find the minimum of

h1 + h2 + h3

ρ

over all triangles.

Solution (by Daniel Vacaru, Pitesti, Romania; edited by the Panel)

Let S be the area, and a, b, c, be the sides. We have h1 =
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Also, we have ρ =
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, where 2p = a+ b+ c. Therefore,
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Therefore, the minimum is 9. The triangle for which the minimum is attained is the

equilateral triangle.
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