PROBLEM OF THE WEEK

Solution of Problem No. 6 (Spring 2005 Series)

Problem: Let Q be a non-degenerate convex quadrilateral inscribed in a circle. Show that the four lines, each passing through the midpoint at a side of Q and perpendicular to the opposite side, meet in a point.

Solution (by the Panel)

Let the origin of the coordinate system be at the center of the circle, and let the vertices of Q be at the vectors a, b, c, d. Then $|a|=|b|=|c|=|d|=1$, and

$$
(a-b) \cdot(a+b)=0,
$$

similarly for any other pair. Therefore, $a+b$ is perpendicular to the side (a, b);
$b+c$ is perpendicular to (b, c), etc. The equation of the line through the midpoint of (a, b), perpendicular to (c, d) is

$$
x\left(s_{1}\right)=\frac{a+b}{2}+s_{1}(c+d), \quad-\infty<s<\infty .
$$

We apply the same argument to each pair of consecutive vertices. As a result, we reduce the problem to the following one: Show that there is unique solution $\left(s_{1}, s_{2}, s_{3}, s_{4}, x\right)$ of the system:

$$
\begin{aligned}
& x=\frac{1}{2}(a+b)+s_{1}(c+d), \\
& x=\frac{1}{2}(b+c)+s_{2}(d+a), \\
& x=\frac{1}{2}(c+d)+s_{3}(a+b), \\
& x=\frac{1}{2}(d+a)+s_{4}(b+c) .
\end{aligned}
$$

An obvious solution of this system is $s_{1}=s_{2}=s_{3}=s_{4}=\frac{1}{2}$, and

$$
x=\frac{1}{2}(a+b+c+d) .
$$

This solution is unique, because the first two lines, for example, are not parallel, so they have unique common point.

Partly solved by:

Prasad Chebulu (CMU, Pittsburg), Georges Ghosn (Quebec), Steven Landy (IUPUI), A. Plaza (ULPGC, Spain), M. Rappaport (Worcester Yeshiva Acad.), Daniel Vacaru (Pitesti, Romania), Gabriel Vrinceanu (Bucharest)

