PROBLEM OF THE WEEK

Solution of Problem No. 7 (Spring 2005 Series)

Problem: Let $P(x)$ be a polynomial such that all roots of $P(x)$ are real.
(a) Prove that

$$
\left(P^{\prime}(x)\right)^{2} \geq P(x) P^{\prime \prime}(x) \quad \text { for all real } x
$$

(b) For what x does an equality hold?

Solution (by Georges Ghosn, Quebec)

The problem is trivial if $\operatorname{deg} P=0$, so we assume $\operatorname{deg} P \neq 0$. Since all roots of $P(x)$ are real, $P(x)$ can be expressed as:

$$
P(x)=A\left(x-x_{1}\right)^{m_{1}}\left(x-x_{2}\right)^{m_{2}} \ldots\left(x-x_{n}\right)^{m_{n}} \text { with } m_{i} \geq 1, \text { and } \operatorname{deg} P=m_{1}+\cdots+m_{n}
$$

(a) This inequality is satisfied if $x=x_{i}$, so we suppose $x \neq x_{i}$. Then

$$
\frac{P^{\prime}(x)}{P(x)}=\sum_{i=1}^{n} \frac{m_{i}}{x-x_{i}}, \quad \forall x \in \mathbb{R} \quad\left(x \neq x_{i}\right)
$$

Taking the derivative of both terms of this equality yield to:

$$
\begin{aligned}
\frac{P^{\prime \prime}(x) P(x)-P^{\prime 2}(x)}{P^{2}(x)} & =\sum_{i=1}^{n} \frac{-m_{i}}{\left(x-x_{i}\right)^{2}} \\
& \Rightarrow P^{\prime 2}(x)-P(x) P^{\prime \prime}(x) \\
& =\left(\sum_{i=1}^{n} \frac{m_{i}}{\left(x-x_{i}\right)^{2}}\right) P^{2}(x) \geq 0 \\
& \Rightarrow \quad P^{\prime 2}(x) \geq P(x) P^{\prime \prime}(x) \quad \forall x \in \mathbb{R}
\end{aligned}
$$

(b) Since we have from (a),

$$
P^{\prime 2}(x)-P(x) P^{\prime \prime}(x)>0 \quad \forall x \in \mathbb{R} \quad x \neq x_{i}
$$

and

$$
P^{\prime 2}\left(x_{i}\right)-P\left(x_{i}\right) P^{\prime \prime}\left(x_{i}\right)=P^{\prime 2}\left(x_{i}\right)
$$

The equality holds only for all roots of $P(x)$ of multiplicity equal 2 or higher, or for polynomials of degree zero (constants) for all x.

Also solved by:

Graduates: Ali Butt (ECE), Miguel Hurtado (ECE), Niru Kumari (ME)

Others: Prithwijit De (Ireland), Byungsoo Kim (Seoul Natl. Univ.), Jeff Ledford (Gainesville, GA), A. Plaza (ULPGC, Spain), Arman Sabbaghi (Clay HS, South Bend, IN), Daniel Vacaru (Pitesti, Romania), Gabriel Vrinceanu (Bucharest)

