PROBLEM OF THE WEEK

Solution of Problem No. 8 (Spring 2005 Series)

Problem: Let P_1, P_2, \ldots, P_n be points on a sphere of radius 1 in \mathbb{R}^3 . Let d_{ij} be the distance (in \mathbb{R}^3) from P_i to P_j .

- (a) Prove that $\sum_{i < j} d_{ij}^2 \le n^2$.
- (b) When is $\sum d_{ij}^2 = n^2$?

Solution (by Georges Ghosn, Quebec)

The coordinates of $P_i(i=1...n)$ in a cartesian coordinate system having its origin at the sphere center verify $x_i^2 + y_i^2 + z_i^2 = 1$.

(a) $d_{ij}^2 = P_i P_j^2 = (x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2 = 2 - 2x_i x_j - 2y_i y_j - 2z_i z_j$ but $P_i P_j^2 = P_j P_i^2$ and $P_i P_i^2 = 0$, therefore

$$\sum_{i < j} d_{ij}^2 = \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n d_{ij}^2 = \sum_{i=1}^n \sum_{j=1}^n (1 - x_i x_j - y_i y_j - z_i z_j)$$
$$= n^2 - \left(\sum_{i=1}^n x_i\right)^2 - \left(\sum_{i=1}^n y_i\right)^2 - \left(\sum_{i=1}^n z_i\right)^2 \le n^2$$

(b) The equality holds if and only if $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i = \sum_{i=1}^{n} z_i = 0$. That's mean that the center of mass of $P_1, ... P_n$ is at the origin.

Also solved by:

Graduates: Niru Kumari (ME)

Others: Prasad Chebulu (CMU, Pittsburg), Andrew Ferguson (Scotland), Steven Landy (IUPUI Physics staff), Joe Underbrink (IUPUI) Daniel Vacaru (Pitesti, Romania)