PROBLEM OF THE WEEK

Solution of Problem No. 9 (Spring 2005 Series)

Problem: Let $f(x)$ be a real-valued function on the open interval $(0,1)$. Show that if

$$
\lim _{x \rightarrow 0} f(x)=0, \quad \text { and } \quad \lim _{x \rightarrow 0} \frac{f(x)-f(x / 2)}{x}=0
$$

then

$$
\lim _{x \rightarrow 0} \frac{f(x)}{x}=0
$$

Solution (by Georges Ghosn, Quebec)
$\lim _{x \rightarrow 0} \frac{f(x)-f(x / 2)}{x}=0 \Leftrightarrow \forall \varepsilon>0, \exists \alpha>0 \quad / \quad 0<x<\alpha \Rightarrow\left|f(x)-f\left(\frac{x}{2}\right)\right|<\varepsilon x$.
For any integer $n \geq 1$, we have $0<\frac{x}{2^{n-1}} \leq x<\alpha \Rightarrow\left|f\left(\frac{x}{2^{n-1}}\right)-f\left(\frac{x}{2^{n}}\right)\right|<\varepsilon \frac{x}{2^{n-1}}$.
Adding all these inequalities yields to:

$$
\begin{aligned}
\left|f(x)-f\left(\frac{x}{2^{n}}\right)\right| & \leq\left|f(x)-f\left(\frac{x}{2}\right)\right|+\cdots+\left|f\left(\frac{x}{2^{n-1}}\right)-f\left(\frac{x}{2^{n}}\right)\right| \\
& <\varepsilon x\left(1+\frac{1}{2}+\cdots+\frac{1}{2^{n-1}}\right)=2 \varepsilon x\left(1-\frac{1}{2^{n}}\right)<2 \varepsilon x .
\end{aligned}
$$

Hence $\left|f(x)-f\left(\frac{x}{2^{n}}\right)\right|<2 \varepsilon x$ is satisfied for every positive integer n, and $0<x<\alpha$. On the other hand,

$$
\begin{aligned}
& \lim _{x \rightarrow 0}\left|f(x)-f\left(\frac{x}{2^{n}}\right)\right|=|f(x)| \quad\left(\text { because } \lim _{x \rightarrow 0} f(x)=0\right) \\
& \Rightarrow|f(x)| \leq 2 \varepsilon x \quad \text { for } \quad 0<x<\alpha, \\
& \Rightarrow \lim _{x \rightarrow 0} \frac{f(x)}{x}=0 .
\end{aligned}
$$

All attempts to solve the problem using L'Hôpital Rule or Taylor expansions are incorrect because, among other reasons, we do not know that f is differentiable.

Also, at least partially solved by:

Graduates: Jia-Han Li (EE)

Others: Prasad Chebulu (CMU, Pittsburg), Steven Landy (IUPUI Physics staff), A. Plaza (ULPGC, Spain), Daniel Vacaru (Pitesti, Romania), Gabriel Vrinceanu (Bucharest)

