PROBLEM OF THE WEEK

Solution of Problem No. 10 (Spring 2006 Series)

Problem: Let ε be an ellipse, which is not a circle, with center O. Let $P \in \varepsilon$ be a point at which the angle between the tangent to ε at P and $\overrightarrow{O P}$ is minimal. Find the angle that $\overrightarrow{O P}$ makes with the major axis.

Solution (by Georges Ghosn, Quebec; edited by the Panel)
The ellipse equation is $\varepsilon: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and by symmetry we can assume that $P\left(x_{1}, y_{1}\right) \in \varepsilon$ is in the first quadrant. The equation of the tangent to ε at P is $\frac{X x_{1}}{a^{2}}+\frac{Y y_{1}}{b^{2}}=$ 1. Therefore the slope of the tangent is $m_{1}=-\frac{b^{2} x_{1}}{a^{2} y_{1}}$ and the slope of $\overrightarrow{O P}$ is $m_{2}=\frac{y_{1}}{x_{1}}$. Therefore the tangent of the angle between the above lines is

$$
\frac{m_{2}-m_{1}}{1+m_{2} m_{1}}=\frac{a^{2} y_{1}^{2}+b^{2} x_{1}^{2}}{\left(a^{2}-b^{2}\right) x_{1} y_{1}}=\frac{a^{2} b^{2}}{\left(a^{2}-b^{2}\right) x_{1} y_{1}} .
$$

This angle is minimal if and only if this tangent is minimal and therefore $x_{1} y_{1}$ is maximal. But $\frac{x_{1}}{a} \cdot \frac{y_{1}}{b} \leq \frac{1}{2}\left(\frac{x_{1}^{2}}{a^{2}}+\frac{y_{1}^{2}}{b^{2}}\right)=\frac{1}{2} \Rightarrow \quad x_{1} y_{1} \leq \frac{a b}{2}$. Therefore $x_{1} y_{1}$ is maximal iff $\frac{x_{1}}{a}=\frac{y_{1}}{b}=\frac{\sqrt{2}}{2}$. Finally the angle that $\overrightarrow{O P}$ makes with the major axis is $\tan ^{-1} \frac{y_{1}}{x_{1}}=$ $\tan ^{-1}\left(\frac{b}{a}\right)$.

At least partially solved by:

Undergraduates: Ramul Kumar (Fr. E)

Others: Hoan Duong (San Antonio College), Steven Landy (IUPUI Physics staff), Sandeep Sarat (Johns Hopkins U.)

