PROBLEM OF THE WEEK Solution of Problem No. 11 (Spring 2006 Series)

Problem: Three lines in space, not coplanar, intersect in a common point O. Given a point P not on any of those lines, characterize the plane through P that cuts off a tetrahedron with vertex O of minimal volume.

Solution (by Steven Landy, IUPUI Physics; edited by the Panel)

Let $\vec{e_1}$, $\vec{e_2}$, $\vec{e_3}$ be unit vectors from O along the lines. They form a basis for \mathbb{R}^3 . Let $a\vec{e_1}$, $a\vec{e_2}$, and $a\vec{e_3}$ be the points where a plane is hit by the lines. Let $\vec{p} = (p_1, p_2, p_3)$ be a vector from O to P. If P is in the plane, we have

$$p_1 = \alpha_1 a_1 \qquad p_2 = \alpha_2 a_2 \qquad p_3 = \alpha_3 a_3$$

with

$$\alpha_1 + \alpha_2 + \alpha_3 = 1.$$

The volume of the tetrahedron is

$$V = \frac{a_1 a_2 a_3}{6} |\vec{e_1} \cdot (\vec{e_2} \times \vec{e_3})|.$$

So, we want to minimize

$$a_1a_2a_3 = \frac{p_1p_2p_3}{\alpha_1\alpha_2\alpha_3}$$

with constraint $\alpha_1 + \alpha_2 + \alpha_3 = 1$. In other words, we want to maximize $\alpha_1 \alpha_2 \alpha_3$ subject to the same constraint. This occurs when $\alpha_1 = \alpha_2 = \alpha_3 = 1/3$. Thus *P* must be the centroid of triangle with intercepts $a_1\vec{e_1} \ a_2\vec{e_2} \ a_3\vec{e_3}$ or said the other way, the intercepts must be $3p_1\vec{e_1}, 3p_2\vec{e_2}, 3p_3\vec{e_3}$.

Also solved by:

Hoan Duong (San Antonio College), Georges Ghosn (Quebec)