PROBLEM OF THE WEEK

Solution of Problem No. 11 (Spring 2006 Series)

Problem: Three lines in space, not coplanar, intersect in a common point O. Given a point P not on any of those lines, characterize the plane through P that cuts off a tetrahedron with vertex O of minimal volume.

Solution (by Steven Landy, IUPUI Physics; edited by the Panel)
Let $\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}$ be unit vectors from O along the lines. They form a basis for \mathbb{R}^{3}. Let $a \vec{e}_{1}, a \vec{e}_{2}$, and $a \vec{e}_{3}$ be the points where a plane is hit by the lines. Let $\vec{p}=\left(p_{1}, p_{2}, p_{3}\right)$ be a vector from O to P. If P is in the plane, we have

$$
p_{1}=\alpha_{1} a_{1} \quad p_{2}=\alpha_{2} a_{2} \quad p_{3}=\alpha_{3} a_{3}
$$

with

$$
\alpha_{1}+\alpha_{2}+\alpha_{3}=1
$$

The volume of the tetrahedron is

$$
V=\frac{a_{1} a_{2} a_{3}}{6}\left|\vec{e}_{1} \cdot\left(\vec{e}_{2} \times \vec{e}_{3}\right)\right| .
$$

So, we want to minimize

$$
a_{1} a_{2} a_{3}=\frac{p_{1} p_{2} p_{3}}{\alpha_{1} \alpha_{2} \alpha_{3}}
$$

with constraint $\alpha_{1}+\alpha_{2}+\alpha_{3}=1$. In other words, we want to maximize $\alpha_{1} \alpha_{2} \alpha_{3}$ subject to the same constraint. This occurs when $\alpha_{1}=\alpha_{2}=\alpha_{3}=1 / 3$. Thus P must be the centroid of triangle with intercepts $a_{1} \vec{e}_{1} a_{2} \vec{e}_{2} a_{3} \vec{e}_{3}$ or said the other way, the intercepts must be $3 p_{1} \vec{e}_{1}, 3 p_{2} \vec{e}_{2}, 3 p_{3} \vec{e}_{3}$.

Also solved by:

Hoan Duong (San Antonio College), Georges Ghosn (Quebec)

