
PROBLEM OF THE WEEK

Solution of Problem No. 12 (Spring 2006 Series)

Problem: Evaluate
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.

Solution (by Georges Ghosn, Quebec; edited by the Panel)

The double series converges. Indeed
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= 4.

Therefore, from the comparison test we deduce that
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converges and S ≤ 4.

We pose an =
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n
. Then
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. Since the double series

converges and has only positive terms we can swap the summations. Therefore,
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Finally
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