PROBLEM OF THE WEEK

Solution of Problem No. 3 (Spring 2006 Series)

Problem: Let $a_{1}=\sqrt{2}, \quad a_{2}=(\sqrt{2})^{a_{1}}$, and

$$
a_{n}=(\sqrt{2})^{a_{n-1}}, \quad n=2,3, \ldots
$$

Show that $\lim _{n \rightarrow \infty} a_{n}$ exists and determine its value.
Solution (by Tomek Czajka, CS graduate student; edited by the Panel)
Let $a_{0}=1$. Then $a_{1}=\sqrt{2}^{a_{0}}$. If $a_{n}<2$, then $a_{n+1}=\sqrt{2}^{a_{n}}<\sqrt{2}^{2}=2$. Since $a_{0}<2$, by induction, $a_{n}<2$ for all n. If $a_{n}<a_{n+1}$, then $a_{n+1}=\sqrt{2}^{a_{n}}<\sqrt{2}^{a_{n+1}}=a_{n+2}$. Since $a_{0}=1<\sqrt{2}=a_{1}$, by induction we get that the sequence $\left(a_{n}\right)$ increases. Since $\left(a_{n}\right)$ increases, starts from 1 and is bounded by 2 , it has a limit between 1 and 2 (inclusive). Let $a=\lim _{n \rightarrow \infty} a_{n}$. We have $1 \leq a \leq 2$. Also:

$$
\begin{aligned}
& a=\lim _{n \rightarrow \infty} a_{n+1}=\lim _{n \rightarrow \infty} \sqrt{2}^{a_{n}}=\sqrt{2}{ }^{\lim _{n \rightarrow \infty} a_{n}}=\sqrt{2}^{a} \\
& a^{2}=2^{a} \\
& 2 \ln a=a \ln 2 \\
& 2 \ln a-a \ln 2=0
\end{aligned}
$$

Let $f(x)=2 \ln x-x \ln 2$ for $x>0$. Then $f(a)=0$ and $f(2)=0$. For $1 \leq x \leq 2$, we have $f^{\prime}(x)=2 / x-\ln 2>2 / 2-\ln e=0$. Therefore f increases on the interval [1,2] and thus is injective on this interval. Since $a \in[1,2]$ and $f(a)=f(2)$, we must have $a=2$.
Answer:

$$
\lim _{n \rightarrow \infty} a_{n}=2
$$

At least partially solved by:

Undergraduates: James Martindale (jr. Math \& Stat)

Graduates: Richard Eden (Math)

Others: Prithwijit De (Ireland), Georges Ghosn (Quebec), Bob Hanek, Bhilahari Jeevanesan (Germany), Patricia Johnson (OSU-Lima, OH)

