PROBLEM OF THE WEEK

Solution of Problem No. 9 (Spring 2006 Series)

Problem: Let $A>0$ be a rational number. Show that A is the area of a right triangle with rational sides if and only if there exist three rational numbers u, v and w, so that

$$
u^{2}-v^{2}=v^{2}-w^{2}=A .
$$

Solution (by Nguyen Nguyen T.K., San Antonio College; edited by the Panel)
Let A be the area of the right triangle T with rational sides $a, b, c(a \leq b<c)$. Then $a^{2}+b^{2}=c^{2}$ and $A=\frac{a b}{2}$. Let $u=\frac{a+b}{2}, v=\frac{c}{2}$, and $w=\frac{b-a}{2}$. Then u, v, and w are rational numbers, and we have

$$
A=\frac{a b}{2}=\frac{a^{2}+2 a b+b^{2}}{4}-\frac{a^{2}+b^{2}}{4}=\left(\frac{a+b}{2}\right)^{2}-\left(\frac{c}{2}\right)^{2}=u^{2}-v^{2}
$$

and

$$
A=\frac{a b}{2}=\frac{a^{2}+b^{2}}{4}-\frac{a^{2}-2 a b+b^{2}}{4}=\left(\frac{c}{2}\right)^{2}-\left(\frac{b-a}{2}\right)^{2}=v^{2}-w^{2} .
$$

On the other hand, let $u>v>w \geq 0$ be rational numbers such that

$$
\begin{equation*}
u^{2}-v^{2}=v^{2}-w^{2}=A, \tag{*}
\end{equation*}
$$

for some (rational number) A. Let $a=u-w, b=u+w, c=2 v$. Then a, b, c are rational numbers and since $u^{2}+w^{2}=2 v^{2}$ by ($*$), we have:

$$
a^{2}+b^{2}=(u-w)^{2}+(u+w)^{2}=2\left(u^{2}+w^{2}\right)=4 v^{2}=c^{2} .
$$

Since $u^{2}-w^{2}=2\left(v^{2}-w^{2}\right)=2 A$ by $\left(^{*}\right)$, we have:

$$
\frac{a b}{2}=\frac{(u-w) \cdot(u+w)}{2}=\frac{u^{2}-w^{2}}{2}=A
$$

Therefore, a, b, c are rational sides of a right triangle of area A.

At least partially solved by:
Undergraduates: Alan Bernstein (Jr. ECE)
Graduates: Tom Engelsman (ECE)
Others: Rebecca \& David Bobick (W. Lafayette), Prithwijit De (Ireland), Georges Ghosn (Quebec), Bhilahari Jeevanesan (Germany), Tim Lee (Junior, RPI), Babenko Michail (Stavropol, Russia), Sandeep Sarat (Johns Hopkins U.)

