
PROBLEM OF THE WEEK

Solution of Problem No. 1 (Spring 2007 Series)

Problem:

Show that

n∑
k=1

akbk

1 + ak + bk
≤

n∑
k=1

ak
n∑
k=1

bk

1 +
n∑
k=1

ak +
n∑
k=1

bk

for any positive ak, bk (k = 1, . . . n).

Solution (by Georges Ghosn, Quebec)

For n = 1 the result is clear. Let’s prove the inequality for n = 2, which is
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Now by induction suppose the inequality holds for n. Then
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Therefore, the inequality holds for any n.
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