PROBLEM OF THE WEEK

Solution of Problem No. 11 (Spring 2007 Series)

Problem: Given triangle with vertices A, B, C. Points A_{1}, B_{1}, C_{1} are chosen on sides $\overline{B C}, \overline{C A}, \overline{A B}$ resp., such that the centroid of $\triangle A_{1} B_{1} C_{1}$ coincides with the centroid of $\triangle A B C$ and that the ratio area $\left(\triangle A_{1} B_{1} C_{1}\right) / \operatorname{area}(\triangle A B C)$ is minimal. Determine with proof, the location of A_{1}, B_{1}, C_{1}.

Solution (by Pete Kornya, Ivy Tech faculty, Bloomington, IN)
Let $\underline{a}, \underline{b}, \underline{c}, \underline{a}_{1}, \underline{b}_{1}, \underline{c}_{1}$ be the position vectors of, respectively, $A, B, C, A_{1}, B_{1}, C_{1}$ which are assumed to be points in R^{3}. Let $\underline{c}=\underline{0}$. There are $0 \leq \lambda_{1}, \lambda_{2}, \lambda_{3} \leq 1$ such that $\underline{a}_{1}=\lambda_{1} \underline{b}$, $\underline{b}_{1}=\left(1-\lambda_{2}\right) \underline{a}$ and $\underline{c}_{1}=\lambda_{3} \underline{a}+\left(1-\lambda_{3}\right) \underline{b}$. Equating the position vectors of the centroids of $\triangle A B C$ and $\triangle A_{1} B_{1} C_{1}$

$$
\frac{1}{3}(\underline{a}+\underline{b})=\frac{1}{3}\left[\lambda_{1} \underline{b}+\left(1-\lambda_{2}\right) \underline{a}+\lambda_{3} \underline{a}+\left(1-\lambda_{3}\right) \underline{b}\right]
$$

produces $\left(\lambda_{3}-\lambda_{2}\right) \underline{a}+\left(\lambda_{1}-\lambda_{3}\right) \underline{b}=\underline{0}$. Since $\underline{a}, \underline{b}$ are linearly independent, $\lambda_{3}-\lambda_{2}=$ $\lambda_{1}-\lambda_{3}=0$. Let $\lambda=\lambda_{1}=\lambda_{2}=\lambda_{3}$. Twice the area of $\triangle A B C$ equals $|\underline{a} \times \underline{b}|$. Twice the area of $\triangle A_{1} B_{1} C_{1}$ equals

$$
\begin{aligned}
\left|\left(\underline{c}_{1}-\underline{a}_{1}\right) \times\left(c_{1}-\underline{b}_{1}\right)\right| & =|[\lambda \underline{a}+(1-2 \lambda) \underline{b}] \times[(2 \lambda-1) \underline{a}+(1-\lambda) \underline{b}]| \\
& =\left|3 \lambda^{2}-3 \lambda+1\right| \underline{a} \times \underline{b} \mid
\end{aligned}
$$

The ratio of the area of $\triangle A_{1} B_{1} C_{1}$ to the area of $\triangle A B C$ is therefore $\left|3 \lambda^{2}-3 \lambda+1\right|$, which is minimized when $\lambda=\frac{1}{2}$. Therefore A_{1}, B_{1}, C_{1} are the midpoints of, respectively, the sides $\overline{B C}, \overline{C A}$ and $\overline{A B}$ of $\triangle A B C$.

Also solved by:
Undergraduates: Alan Bernstein (Sr. ECE), Noah Blach, Nate Orlow (So, MA)
Graduates: Tom Engelsman (ECE)

Others: Georges Ghosn (Quebec), Denes Molnar (Physics, Assistant Professor)

