PROBLEM OF THE WEEK Solution of Problem No. 11 (Spring 2007 Series)

Problem: Given triangle with vertices A, B, C. Points A_1, B_1, C_1 are chosen on sides $\overline{BC}, \overline{CA}, \overline{AB}$ resp., such that the centroid of $\triangle A_1B_1C_1$ coincides with the centroid of $\triangle ABC$ and that the ratio $\operatorname{area}(\triangle A_1B_1C_1)/\operatorname{area}(\triangle ABC)$ is minimal. Determine with proof, the location of A_1, B_1, C_1 .

Solution (by Pete Kornya, Ivy Tech faculty, Bloomington, IN)

Let $\underline{a}, \underline{b}, \underline{c}, \underline{a}_1, \underline{b}_1, \underline{c}_1$ be the position vectors of, respectively, A, B, C, A_1, B_1, C_1 which are assumed to be points in \mathbb{R}^3 . Let $\underline{c} = \underline{0}$. There are $0 \leq \lambda_1, \lambda_2, \lambda_3 \leq 1$ such that $\underline{a}_1 = \lambda_1 \underline{b}$, $\underline{b}_1 = (1 - \lambda_2)\underline{a}$ and $\underline{c}_1 = \lambda_3 \underline{a} + (1 - \lambda_3)\underline{b}$. Equating the position vectors of the centroids of $\triangle ABC$ and $\triangle A_1 B_1 C_1$

$$\frac{1}{3}(\underline{a}+\underline{b}) = \frac{1}{3} \left[\lambda_1 \underline{b} + (1-\lambda_2)\underline{a} + \lambda_3 \underline{a} + (1-\lambda_3)\underline{b} \right]$$

produces $(\lambda_3 - \lambda_2)\underline{a} + (\lambda_1 - \lambda_3)\underline{b} = \underline{0}$. Since $\underline{a}, \underline{b}$ are linearly independent, $\lambda_3 - \lambda_2 = \lambda_1 - \lambda_3 = 0$. Let $\lambda = \lambda_1 = \lambda_2 = \lambda_3$. Twice the area of $\triangle ABC$ equals $|\underline{a} \times \underline{b}|$. Twice the area of $\triangle A_1B_1C_1$ equals

$$\left| (\underline{c}_1 - \underline{a}_1) \times (c_1 - \underline{b}_1) \right| = \left| [\lambda \underline{a} + (1 - 2\lambda)\underline{b}] \times [(2\lambda - 1)\underline{a} + (1 - \lambda)\underline{b}] \right|$$
$$= \left| 3\lambda^2 - 3\lambda + 1 \right| |\underline{a} \times \underline{b} |$$

The ratio of the area of $\triangle A_1B_1C_1$ to the area of $\triangle ABC$ is therefore $|3\lambda^2 - 3\lambda + 1|$, which is minimized when $\lambda = \frac{1}{2}$. Therefore A_1, B_1, C_1 are the midpoints of, respectively, the sides $\overline{BC}, \overline{CA}$ and \overline{AB} of $\triangle ABC$.

Also solved by:

<u>Undergraduates</u>: Alan Bernstein (Sr. ECE), Noah Blach, Nate Orlow (So, MA)

Graduates: Tom Engelsman (ECE)

Others: Georges Ghosn (Quebec), Denes Molnar (Physics, Assistant Professor)