PROBLEM OF THE WEEK

Solution of Problem No. 12 (Spring 2007 Series)
Problem: The harmonic series $1-\frac{1}{2}+\frac{1}{3}-\cdots \pm \frac{1}{n} \mp \cdots$ converges to $\log 2$. Show that the rearrange series

$$
1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6}+\cdots
$$

converges and find its limit.

Solution (by Denes Molnar, Physics, Assistant Prof.)
The k-th element of the series $(k=1,2, \ldots)$ is

$$
\begin{aligned}
a_{k} & =1 /(4 k-3)+1 /(4 k-1)-1 / 2 k \\
& =[1 /(4 k-3)-1 /(4 k-2)+1 /(4 k-1)-1 / 4 k]+1 / 2 \times[1 /(2 k-1)-1 / 2 k]
\end{aligned}
$$

The first term is the sum of TWO consecutive terms, $(2 k-1)-$ th and $(2 k)-$ th from $\ln [2]$, while the second term is HALF the k-th term from $\ln [2]$. Summed separately, they both converge, and therefore the summed series also converges to the sum of the individual limits (elementary theorem from analysis). Thus, the rearranged series converges to $3 / 2 \times \ln [2]$.

Also solved by:
Undergraduates: Alan Bernstein (Sr. ECE), Noah Blach, Ankit Kuwadekar (Fr. CS), Nate Orlow (So. MA), Siddharth Tekriwal (Fr. Engr.)

Graduates: Doug Babcock (Math), Tom Engelsman (ECE)

Others: Georges Ghosn (Quebec), Elijah Mena (Ledyard High School, Connecticut)

