PROBLEM OF THE WEEK

Solution of Problem No. 13 (Spring 2007 Series)

Problem: Determine the polynomial $p(x)$ of degree up to 3 which minimizes

$$
m=\max _{0 \leq x \leq 1}|\cos 4 \pi x-p(x)|
$$

Prove your answer.

Solution (by Pete Kornya, Faculty, Ivy Tech, Bloomington)
If $p(x)$ is the zero polynomial, then $m=\max _{0 \leq x \leq 1}|\cos 4 \pi x|=1$. Now suppose that $p(x)$ is a polynomial of degree up to 3 such that $m \leq 1$. We show that $p(x)$ must be the zero polynomial. Since $m \leq 1$

$$
\begin{equation*}
p(0), p(0.5), p(1) \geq 0 ; \quad p(0.25), p(0.75) \leq 0 \tag{1}
\end{equation*}
$$

Let Δ be the forward differencing operator $\Delta: p(x) \rightarrow p(x+0.25)-p(x)$. Then, since the degree of $p(x)$ is at most 3 ,

$$
\begin{aligned}
0 & =\Delta^{4} p(0) \\
& =p(1)-4 p(0.75)+6 p(0.5)-4 p(0.25)+p(0) \\
& =[p(1)-p(0.75)]+3[p(0.5)-p(0.75)]+3[p(0.5)-p(0.25)]+[p(0)-p(0.25)]
\end{aligned}
$$

By (1) and the last line of $(2), p(1)=p(0.75)=p(0.5)=p(0.25)=p(0)=0$. Since the degree of $p(x)$ is at most 3 , and $p(x)$ has at least 5 zeros, it must be the zero polynomial. Therefore the required polynomial $p(x)$ is the zero polynomial.

Also solved by:
Mark Crawford (Waubonsee Community College instructor), Georges Ghosn (Quebec)

