PROBLEM OF THE WEEK

Solution of Problem No. 4 (Spring 2007 Series)

February 27, 2007

Problem: A rod of length 1 is broken into four pieces. What is the probability that the four pieces are the sides of a trapezoid?
Solution (revised) (by the panel)
Let the (positive) lengths of the four pieces be x, y, z, and $w=1-x-y-z$. Claim: These are the lengths of the sides of a nondegenerate trapezoid $T \Longleftrightarrow$ they are all $<1 / 2$.

Proof. (\Rightarrow) If, say, $x \geq 1 / 2$, then $x \geq y+z+w$, hence T cannot exist.
(\Leftarrow) Three positive numbers a_{1}, a_{2}, a_{3} are the lengths of the sides of a triangle if (and, of course, only if) the three triangle inequalities $a_{i}<a_{j}+a_{k}$ (i, j, k distinct) all hold. Indeed, if, say, $a_{1} \geq a_{2} \geq a_{3}$, then two circles of radii a_{2} and a_{3} centered at the end points of a line segment of length a_{1} must intersect.

Under the harmless assumption that $x \geq y \geq z \geq w$, we have

$$
x-w<y+z, \quad y<x-w+z, \quad z<x-w+y
$$

so there is a triangle $A B C$ with sides of respective lengths $x-w, y$ and z. Extend the side $A B$ by w units to a segment $A D$ of length x, and let E be a point such that $B D E C$ is a parallelogram. Then $T:=A D E C$ is a trapezoid with sides of length x, y, w, z.

The meaning of the conditions of the statement can be illustrated by the following diagram where the four corners correspond to the four inequalities $x, y, z \geq 1 / 2, x+y+z \leq 1 / 2$. We have to cut off the four corners to get the (x, y, z) for which x, y, z, w are the lengths of the sides of a trapezoid ..

From the above we know that we have to cut off four small regular tetrahedra around the four vertices. Since each small tetrahedron has volume $1 / 8$ of the total volume, we discard $4(1 / 8)=1 / 2$ of the total volume. We conclude that the probability is $1-1 / 2=1 / 2$.

Also solved by:
Undergraduates : Alan Bernstein (Sr. ECE), Nathan Claus (Fr. Math).
Graduates : Tomek Czajka (CS), Tom Engelsman (ECE)
Others : Manuel Barbero (New York), Georges Ghosn (Quebec), Steven Landy (IUPUI, Physics)

