
PROBLEM OF THE WEEK

Solution of Problem No. 10 (Spring 2008 Series)

Problem: Let ABC be a (non–degenerate) triangle and a, b, c the lengths of the sides

opposite A,B,C, respectively. Show that there is a triangle A′, B′, C′ with corresponding

sides
√
a,
√
b,
√
c. Show further that ∠B′A′C′ > 1

2
∠BAC.

Solution (by Brian Bradie, Professor, Christopher Newport U. VA)

Because ABC is a non–degenerate triangle, we have a, b, c > 0 and

a+ b > c, b+ c > a and c+ a > b. (1)

With a, b, c > 0, it follows that

√
a+ b <

√
a+ 2

√
ab+ b =

√
a+
√
b. (2)

Similarly, √
b+ c <

√
b+
√
c and

√
c+ a <

√
c+
√
a. (3)

Combining (1), (2) and (3) yields

√
a+
√
b >
√
a+ b >

√
c;

√
b+
√
c >
√
b+ c >

√
a; and

√
c+
√
a >
√
c+ a >

√
b.

From these last three inequalities, it follows that there exists a triangle A′B′C′ with cor-

responding sides
√
a,
√
b,
√
c. Now, by the Law of Cosines,

cos(∠BAC) =
b2 + c2 − a2

2bc
.

Because 0 < ∠BAC < π,

cos

(
1

2
∠BAC

)
=

√
1 + cos(∠BAC)

2
=

√
(b+ c)2 − a2

2
√
bc

=

√
(b+ c− a)(b+ c+ a)

2
√
bc

>
b+ c− a

2
√
bc

= cos(∠B′A′C′).



Finally, as cos θ is decreasing for 0 < θ < π, it follows that ∠B′A′C′ > 1

2
∠BAC.
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