PROBLEM OF THE WEEK Solution of Problem No. 2 (Spring 2008 Series)

Problem: Assume 0 < q < 1 and $f(x) = \frac{\sinh qx}{\sinh x}$. Show that f is monotone decreasing on $(0, \infty)$.

Solution (by George Hassapis, Math. Graduate student, Purdue)

Step 1: Consider the function $g(x) = q \tanh x - \tanh(qx)$, x > 0. We will prove that g is strictly decreasing and negative on $(0, +\infty)$. We have

$$g'(x) = q(\cosh x)^{-2} - q[\cosh(qx)]^{-2}$$
, for all $x > 0$.

Now cosh is strictly increasing on $(0, +\infty)$ and for all x > 0 we have qx < x, so $\cosh(qx) < \cosh x$ which implies $[\cosh(qx)]^2 < (\cosh x)^2$, since $0 < \cosh(qx) < \cosh x$. Thus g'(x) < 0 for all x > 0 i.e. g is strictly decreasing on $(0, +\infty)$. Therefore g(x) < g(0) = 0, for all x > 0.

Step 2: Now, the derivative of f on $(0, +\infty)$ is

$$f'(x) = \frac{q\cosh(qx)\sinh x - \sinh(qx)\cosh x}{(\sinh x)^2} = \cosh(qx)\cosh x \frac{g(x)}{(\sinh x)^2}$$

which is obviously negative on $(0, +\infty)$ since $\cosh(qx), \cosh x$, and $(\sinh x)^2$ are positive and g(x) is negative on $(0, +\infty)$. Thus f is strictly decreasing on $(0, +\infty)$.

Also solved by:

<u>Undergraduates</u>: Rahul Kumar (Sr. ECE), Hetong Li (Fr. Science)

Graduates: Miguel Hurtado (ECE)

<u>Others</u>: Aviv Adler (Jr. College Prep. HS, CA), Brian Bradie (Christopher Newport U. VA), Hoan Duong (San Antonio College), Elie Ghosn (Montreal, Quebec), Gerard D. Koffi & Swami Iyer (U. Massachusetts, Boston), Steven Landy (IUPUI Physics), Rajeev Malhotra (MD, Harvard Univ.), Sorin Rubinstein (TAU faculty, Israel), Bill Wolber Jr. (ITaP)