PROBLEM OF THE WEEK

Solution of Problem No. 3 (Spring 2008 Series)

Problem: Show that a real number q is rational if and only if there are three distinct integers, n_{1}, n_{2}, n_{3}, such that $q+n_{1}, q+n_{2}, q+n_{3}$ forms a geometric progression.

Solution (by Richard B. Eden, Math. Graduate student, Purdue)
Suppose q is a rational number. If $q=0$, we can choose $n_{1}=1, n_{2}=2, n_{3}=4$. So now suppose $q=\frac{r}{s}$, not necessarily in lowest terms, where $r, s \in \mathbb{Z}, s \neq 0$ and $r \neq 0$. We can also assume $s \notin\{-1,-2\}$ since we can multiply r and s by the same constant.

Let $n_{1}=0, n_{2}=r, n_{3}=2 r+r s$. These three integers are distinct since $r \neq 0$ and $s \neq-1,-2$. In this case,

$$
\begin{aligned}
q+n_{1} & =\frac{r}{s}+0=\frac{r}{s} \\
q+n_{2} & =\frac{r}{s}+r=\frac{r}{s}(1+s) \\
q+n_{3} & =\frac{r}{s}+2 r+r s=\frac{r}{s}(1+s)^{2}
\end{aligned}
$$

really do form a geometric sequence.
Now suppose $q+n_{1}, q+n_{2}, q+n_{3}$ form a geometric sequence with n_{1}, n_{2}, n_{3} distinct integers. This means $\left(q+n_{2}\right)^{2}=\left(q+n_{1}\right)\left(q+n_{3}\right)$, which implies

$$
\left(n_{1}+n_{3}-2 n_{2}\right) q=n_{2}^{2}-n_{1} n_{3}
$$

If $\left(n_{1}+n_{3}-2 n_{2}\right)=0$, so $n_{2}=\frac{n_{1}+n_{3}}{2}$, we can write $n_{1}=n_{2}-d$ and $n_{3}=n_{2}+d$ for some $d \in \mathbb{Z}$. We then have, from the above equation,

$$
0=n_{2}^{2}-n_{1} n_{3}=n_{2}^{2}-\left(n_{2}-d\right)\left(n_{2}+d\right)=d^{2}
$$

so $d=0$ and $n_{1}=n_{2}=n_{3}$. However, n_{1}, n_{2}, n_{3} are all distinct. Therefore, $n_{1}+n_{3}-2 n_{2} \neq 0$ and

$$
q=\frac{n_{2}^{2}-n_{1} n_{3}}{n_{1}+n_{3}-2 n_{2}}
$$

which is a rational number.

Also solved by:

Undergraduates: Noah Blach (Fr. Math), Nathan Claus (Fr. Math)

Graduates: Miguel Hurtado (ECE)

Others: Brian Bradie (Christopher Newport U. VA), Hoan Duong (San Antonio College), Elie Ghosn (Montreal, Quebec), Brian Huang (Jr. Saint Joseph's HS, IN), Gerard D. Koffi \& Swami Iyer (U. Massachusetts, Boston), Steven Landy (IUPUI Physics), Sorin Rubinstein (TAU faculty, Israel), Steve Spindler (Chicago), Kevin Ventullo (IIT, Chicago)

