
PROBLEM OF THE WEEK

Solution of Problem No. 6 (Spring 2008 Series)

Problem: Show that the sequence
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, n = 1, 2, . . . is decreasing.

Solution (by Jeremy Rocke, Freshman, Christopher Newport University)

We will show that the sequence
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is decreasing by proving that the function
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We know that e
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is positive so we will be looking at the other factor.

Let g(x) =
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. Now we take the derivative of g(x) and we get
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Clearly g′(x) is positive on (0,∞) which implies that g(x) is increasing on (0,∞). But
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= 0. So as x gets big, g(x) increases



to 0. The only way that can happen is if g(x) is negative on (0,∞). Thus f ′(x) =
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g(x) is negative on (0,∞) and so f(x) is decreasing on (0,∞). In par-

ticular, the sequence
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, n = 1, 2, . . . is decreasing.
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