PROBLEM OF THE WEEK Solution of Problem No. 14 (Spring 2009 Series)

Problem: A number $c, 0 < c \leq 1$, is called a <u>chord-number</u> if for every continuous function $f : [0,1] \to \mathbb{R}$ with f(0) = f(1) = 0, there is a point x_0 in [0, 1-c] such that $f(x_0) = f(x_0 + c)$. Show that $\{\frac{1}{n} : n = 1, 2, ...,\}$ are the only chord-numbers.

Solution (by Sorin Rubinstein, TAU faculty, Israel)

Assume that for some positive integer *n* the number $\frac{1}{n}$ is not a chord number, and let f: $[0,1] \to \mathbb{R}$ be a continuous function such that f(0) = f(1) = 0 and $f\left(x + \frac{1}{n}\right) - f(x) \neq 0$ for every $x \in \left[0, 1 - \frac{1}{n}\right]$. Then the function $g(x) := f\left(x + \frac{1}{n}\right) - f(x)$ is either strictly positive or strictly negative on $\left[0, 1 - \frac{1}{n}\right]$. We assume without lost of generality that g(x) > 0 on this interval. Then $g\left(\frac{k}{n}\right) = f\left(\frac{k+1}{n}\right) - f\left(\frac{k}{n}\right) > 0$ for $k = 0, 1, 2, \dots, n-1$. Therefore $\sum_{k=0}^{n-1} g\left(\frac{k}{n}\right) > 0$. On the other hand $\sum_{k=0}^{n-1} g\left(\frac{k}{n}\right)$ is a telescoping sum and $\sum_{k=0}^{n-1} g\left(\frac{k}{n}\right) = \sum_{k=0}^{n-1} \left(f\left(\frac{k+1}{n}\right) - f\left(\frac{k}{n}\right)\right) = f(1) - f(0) = 0$ which is a contradiction. Thus $\frac{1}{n}$ must be a chord number for $n = 1, 2, 3 \dots$ Now, let c, 0 < c < 1 be a number such that $c \neq \frac{1}{n}$ for $n = 1, 2, 3 \dots$ For every $x \in \mathbb{R}$ let h(x) be the distance from x to the nearest integer. This is a continuous function. Define the function $f: [0, 1] \to \mathbb{R}$ by:

$$f(x) = h\left(\frac{x}{c}\right) - xh\left(\frac{1}{c}\right)$$

Then f is continuous, f(0) = f(1) = 0 and, since $h\left(\frac{x+c}{c}\right) = h\left(\frac{x}{c}+1\right) = h\left(\frac{x}{c}\right)$,

$$f(x+c) = h\left(\frac{x+c}{c}\right) - (x+c)h\left(\frac{1}{c}\right) = h\left(\frac{x}{c}\right) - xh\left(\frac{1}{c}\right) - ch\left(\frac{1}{c}\right) = f(x) - ch\left(\frac{1}{c}\right).$$

Since $\frac{1}{c}$ is not an integer $h\left(\frac{1}{c}\right) \neq 0$ and, therefore, $f(x+c) \neq f(x)$ for every x in [0, 1-c]. Thus c is not a chord number.

The problem was also solved by:

<u>Others</u>: Gruian Cornel (IT, Romania), Elie Ghosn (Montreal, Quebec), Steven Landy (IUPUI Physics staff), Wei-hsiang Lien (Grad student, National Chiao-Tung Univ., Taiwan)