PROBLEM OF THE WEEK

Problem: A number $c, 0<c \leq 1$, is called a chord-number if for every continuous function $f:[0,1] \rightarrow \mathbb{R}$ with $f(0)=f(1)=0$, there is a point x_{0} in $[0,1-c]$ such that $f\left(x_{0}\right)=f\left(x_{0}+c\right)$. Show that $\left\{\frac{1}{n}: n=1,2, \ldots,\right\}$ are the only chord-numbers.

Solution (by Sorin Rubinstein, TAU faculty, Israel)
Assume that for some positive integer n the number $\frac{1}{n}$ is not a chord number, and let f : $[0,1] \rightarrow \mathbb{R}$ be a continuous function such that $f(0)=f(1)=0$ and $f\left(x+\frac{1}{n}\right)-f(x) \neq 0$ for every $x \in\left[0,1-\frac{1}{n}\right]$. Then the function $g(x):=f\left(x+\frac{1}{n}\right)-f(x)$ is either strictly positive or strictly negative on $\left[0,1-\frac{1}{n}\right]$. We assume without lost of generality that $g(x)>0$ on this interval. Then $g\left(\frac{k}{n}\right)=f\left(\frac{k+1}{n}\right)-f\left(\frac{k}{n}\right)>0$ for $k=0,1,2, \ldots, n-1$. Therefore $\sum_{k=0}^{n-1} g\left(\frac{k}{n}\right)>0$. On the other hand $\sum_{k=0}^{n-1} g\left(\frac{k}{n}\right)$ is a telescoping sum and $\sum_{k=0}^{n-1} g\left(\frac{k}{n}\right)=$ $\sum_{k=0}^{n-1}\left(f\left(\frac{k+1}{n}\right)-f\left(\frac{k}{n}\right)\right)=f(1)-f(0)=0$ which is a contradiction. Thus $\frac{1}{n}$ must be a chord number for $n=1,2,3 \ldots$ Now, let $c, 0<c<1$ be a number such that $c \neq \frac{1}{n}$ for $n=1,2,3 \ldots$ For every $x \in \mathbb{R}$ let $h(x)$ be the distance from x to the nearest integer. This is a continuous function. Define the function $f:[0,1] \rightarrow \mathbb{R}$ by:

$$
f(x)=h\left(\frac{x}{c}\right)-x h\left(\frac{1}{c}\right)
$$

Then f is continuous, $f(0)=f(1)=0$ and, since $h\left(\frac{x+c}{c}\right)=h\left(\frac{x}{c}+1\right)=h\left(\frac{x}{c}\right)$,

$$
f(x+c)=h\left(\frac{x+c}{c}\right)-(x+c) h\left(\frac{1}{c}\right)=h\left(\frac{x}{c}\right)-x h\left(\frac{1}{c}\right)-\operatorname{ch}\left(\frac{1}{c}\right)=f(x)-\operatorname{ch}\left(\frac{1}{c}\right) .
$$

Since $\frac{1}{c}$ is not an integer $h\left(\frac{1}{c}\right) \neq 0$ and, therefore, $f(x+c) \neq f(x)$ for every x in $[0,1-c]$. Thus c is not a chord number.

The problem was also solved by:

Others: Gruian Cornel (IT, Romania), Elie Ghosn (Montreal, Quebec), Steven Landy (IUPUI Physics staff), Wei-hsiang Lien (Grad student, National Chiao-Tung Univ., Taiwan)

