## PROBLEM OF THE WEEK

 Solution of Problem No. 7 (Spring 2009 Series)Problem: Let $a_{1}, \ldots, a_{n}$ be integers, not necessarily distinct. Show that there must be a non-empty sub-collection of $a_{1}, \ldots, a_{n}$ whose sum is divisible by $n$.

Solution (by Richard Eden, Graduate student, Math, Purdue University)

Let $S_{k}=a_{1}+\cdots+a_{k}, k=1,2, \ldots, n$. If $S_{k} \equiv 0(\bmod n)$ for some $k$, then $\left\{a_{1}, \ldots, a_{k}\right\}$ is our required collection of integers. So suppose now that the set of possible residues modulo $n$ of the $S_{k}$ 's is $\{1,2, \ldots, n-1\}$.
Therefore, we can find two partial sums $S_{i}$ and $S_{j}, i>j$, with the same residue, so $S_{i} \equiv S_{j}$ $(\bmod n)$. This means $S_{i}-S_{j}=a_{j+1}+a_{j+2}+\cdots+a_{i}$ is divisible by $n$, so our required collection is $\left\{a_{j+1}, a_{j+2}, \cdots, a_{i}\right\}$ which is nonempty since $i \geq j+1$.

The problem was also solved by:

Undergraduates: Xingyi Qin (Sr. Actuarial Sci.)

Graduates: Phuong Thanh Tran (ECE), Tairan Yuwen

Others: Brian Bradie (Christopher Newport U. VA), Gruian Cornel (IT, Romania), Mark Crawford (Waubonsee Community College instructor), Randin Divelbiss (University of Wisconsin-Wausau), Erik B. Eggertsen (Jr. Oak Park and River Forest HS, IL), Tom Engelsman, Elie Ghosn (Montreal, Quebec), Tigran Hakobyan (Armenia), Chun-Hao Huang (Grad student, National Central Univ. Taiwan), John Hyde (Hoover, AL), S. Kirshanthan (St. Anthony's College, Sri Lanka), Steven Landy (IUPUI Physics staff), Timothy Lee (Rensselaer Polytechnic Institute), Wei-hsiang Lien (Grad student, National Chiao-Tung Univ., Taiwan), Sorin Rubinstein (TAU faculty, Israel), Steve Spindler (Chicago), Sahana Vasudevan (6th grade, Miller Middle School, CA), Yansong Xu (Brandon, FL)

