PROBLEM OF THE WEEK

 Solution of Problem No. 8 (Spring 2009 Series)Problem: Let A_{1}, \ldots, A_{n} be finite sets and let $a_{i j}$ be the cardinality of $A_{i} \cap A_{j}$. Show that the $n \times n$ matrix $\left(a_{i j}\right)$ is positive semidefinite. (In other words, show that $\sum_{i, j=1}^{n} a_{i j} x_{i} x_{j} \geq 0$ for all real numbers x_{1}, \ldots, x_{n}.)

Solution (by Neacsu Adrian, Romania)

Let $B=A_{1} \cup \cdots \cup A_{n}=\left\{b_{1}, \ldots, b_{q}\right\}$
Define C in $M_{n q}(R)$ such that $C_{i j}=1$, if b_{j} in A_{i} and $C_{i j}=0$, if b_{j} not in A_{i}, i from 1 to n, j from 1 to q. Then $C C^{t}=A$.
If $X=\left(x_{1} \ldots x_{n}\right)$ in $M_{1 n}(R)$ corresponding sum can be written

$$
X A X^{t}=X C C^{t} X^{t}=(X C)(X C)^{t}=D D^{t}
$$

where $D=X C$ in $M_{1 q}(R)$, so $D D^{t}=d_{1}^{2}+\cdots+d_{q}^{2} \geq 0$.

The problem was also solved by:

Others: Brian Bradie (Christopher Newport U. VA), Randin Divelbiss (University of Wisconsin-Wausau), John Hyde (Hoover, AL), Steven Landy (IUPUI Physics staff), Weihsiang Lien (Grad student, National Chiao-Tung Univ., Taiwan), Sorin Rubinstein (TAU faculty, Israel), Yansong Xu (Brandon, FL)

