
PROBLEM OF THE WEEK

Solution of Problem No. 10 (Spring 2010 Series)

Problem: Prove that, if x and y are positive irrationals such that

1

x
+

1

y
= 1,

then the sequences [x], [2x], [3x], . . . , [y], [2y], [3y], . . . together

include every positive integer exactly once.

Note: [u] denotes the largest integer n satisfying n ≤ u.

Solution (by Zhengpeng Wu, Tsinghua University, China)

First, we prove there are no positive integers m0, n0, satisfying [m0x] = [n0y]. Otherwise,

we let k = [m0x] = [n0y]. Then we have k < m0x < k + 1, k < n0y < k + 1. Because x, y

are irrational, there is no equality. Then we have

m0

k + 1
<

1

x
<
m0

k
and

n0

k + 1
<

1

y
<
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k
⇒ m0 + n0

k + 1
< 1 <

m0 + n0

k
⇒ k < m0+n0 < k+1.

But there is no integer between k and k + 1. So we get a contradiction.

Second, we prove {[mx]} and {[ny]} cover all positive integers. It is impossible that

x > 2, y > 2, so we suppose 2 > x > 1, y > 1 without loss of generality. Then the steps

in {[mx]} are 1 or 2. Then we prove {[ny]} fills the gaps in {[mx]} when the step is 2.

Suppose k < m0x < k + 1, k + 2 < (m0 + 1)x < k + 3. Then
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m0 + 1

k + 3
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x
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⇒ k + 1

k + 1−m0
< y <

k

k −m0
and

k + 3

k + 2−m0
< y <

k + 2

k + 1−m0

⇒ k + 1 < (k + 1−m0)y < k + 2⇒ [(k + 1−m0)y] = k + 1.

The gap in {[mx]} is filled.
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