
PROBLEM OF THE WEEK

Solution of Problem No. 11 (Spring 2010 Series)

Problem: Show that
1∫

0

xx dx =

∞∑
n=1

(−1)n+1n−n.

Solution (by Youness Oumzil, Lycée Michel Montaigne, France)

1∫
0

xx dx =

1∫
0

ex ln(x)dx =

1∫
0

∞∑
n=0

(x ln(x))n

n!
dx.

Since ∀x ∈ [0, 1], |x ln(x)| ≤ 1,

∀x ∈ [0, 1], ∀n,
|x ln(x)|n

n!
≤ 1

n!
.

This shows that series of functions
∑
n≥0

(x ln(x))n

n!
converges uniformly on the interval [0, 1].

We can then exchange the order of the integral and the sum:

1∫
0

∞∑
n=0

(x ln(x))n

n!
dx =

∞∑
n=0

1∫
0

(x ln(x))n

n!
dx.

Let’s consider the notation:

In =

1∫
0

(x ln(x))n

n!
dx.

Let’s show ∀k ≤ n, In =
(−1)k

(n+ 1)k

1∫
0

xn · (ln(x))n−k

(n− k)! dx. Let’s call this statement P (k)

and use mathematical induction:

@for k = 0: It is correct because it is the definition of In.

Assuming that P (k) holds and k < n we have:

In =
(−1)k

(n+ 1)k

[
xn+1 · (ln(x))n−k

(n− k)!(n+ 1)

]1

0

− (−1)k

(n+ 1)k

1∫
0

xn+1 · (n− k)
(

1
x

)
· (ln(x))n−k−1

(n− k)!(n+ 1)
dx.



So

In = 0− (−1)k

(n+ 1)k

1∫
0

xn · (ln(x))n−k−1

(n− k − 1)!(n+ 1)
dx =

(−1)k+1

(n+ 1)k+1

1∫
0

xn(ln(x))n−k−1

(n− k − 1)!
dx

By P (n), In =
(−1)n

(n+ 1)n

1∫
0

xndx =
(−1)n

(n+ 1)n+1
=

(−1)n+2

(n+ 1)n+1
. Then

1∫
0

xxdx =

∞∑
n=0

1∫
0

(x ln(x))n

n!
dx =

∞∑
n=0

In =

∞∑
n=0

(−1)n+2

(n+ 1)n+1
=

∞∑
n=1

(−1)n+1

nn
.
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