
PROBLEM OF THE WEEK

Solution of Problem No. 13 (Spring 2010 Series)

Problem: Show that for 0 < ε < 1 the expression (x+1)n(x2−(2−ε)x+1) is a polynomial

with strictly positive coefficients if n is sufficiently large. For ε = 10−3 find the smallest

possible n.

Solution (by Gruian Cornel, IT, Romania)

Let p(x) = (x+1)n(x2− (2− ε)x+1) =

n+2∑
k=0

akx
n+2−k where a0 = an+2 = 1, a1 = an+1 =

n−(2−ε) and ak+2 =

(
n

k + 2

)
−(2−ε)

(
n

k + 1

)
+

(
n

k

)
for k = 0, 1, . . . , n−2. For aj > 0, we

have the conditions
(n− k)(n− k − 1)

(k + 1)(k + 2)
−(2−ε)n − k

k + 1
+1 > 0, or (n+1)

(
1

k + 2
+

1

n− k

)
>

4 − ε where k = 0, 1, . . . , n − 2. We need that (1): (n + 1) min

{(
1
k+2 + 1

n−k

)
: k =

0, 1, . . . , n − 2

}
> 4 − ε. Consider f : [0, n − 2] → (0,∞), f(x) =

1

x+ 2
+

1

n− x ,

f ′(x) =
(n+ 2)(2x− (n− 2))

(x+ 2)2(n− x)2
, f ′(x) < 0 on

[
0,
n− 2

2

)
, f ′(x) > 0 on

(
n− 2

2
, n − 2

]
,

n− 2

2
is a minimum point for f and f

(
n− 2

2

)
=

4

n+ 2
. Hence if

4(n+ 1)

n+ 2
> 4 − ε, or

n >
4

ε
− 2 then aj > 0 for j = 0, 1, . . . , n+ 2. Now we inspect the cases:

1) For n even, n = 2m then min

{[
1

k + 2
+

1

n− k

]
: k = 0, . . . , n−2

}
= f(m−1) =

2

m+ 1

and (1) becomes
2(2m+ 1)

m+ 1
> 4− ε, or m >

2

ε
− 1. For ε = 10−3, mmin = 2 · 103 and

nmin = 4000.

2) For n odd, n = 2m + 1 then min

{[
1

k + 2
+

1

n− k

]
: k = 0, . . . , n − 2

}
= f(m) =

f(m− 1) =
1

m+ 1
+

1

m+ 2
and (1) becomes

2(2m+ 3)

m+ 2
> 4− ε, or m >

2

ε
− 2. For

ε = 10−3, mmin = 2 · 103 − 1 and nmin = 4000− 1 = 3999.

Hence for ε = 10−3 the smallest possible n is 3999.
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