
PROBLEM OF THE WEEK

Solution of Problem No. 14 (Spring 2010 Series)

Problem: A sequence a0, a1, a2, . . . of real numbers satisfies

(1) 0 ≤ a0 ≤ 1

and

(2) an+1 = 4a3
n − 6a2

n + an + 1 (n = 0, 1, 2, . . . ).

Given that lim
n→∞

an exists, find (with proof) the possible value(s) of a0.

Solution (by Craig Schroeder, Ph.D. student, Stanford University)

Let f(x) = 4x3 − 6x2 + x + 1. Let a be such a limit. Then, a = f(a). This has three

solutions: a =
1

2
, a =

1

2
± 1

2

√
3.

Let r =
1

2
− 2

9

√
6 and s =

1

2
+

2

9

√
6. Consider the interval I = [r, s]. Iteration starts in

this interval, since [0, 1] ⊂ I. The extreme values of f occur at the endpoints or at local

extrema. f(r) =
1

2
+

44

243

√
6 ∈ I and f(s) =

1

2
− 44

243

√
6 ∈ I. f ′(x) = 12x2−12x+1, so the

critical points are c± =
1

2
± 1

6

√
6, so that f(c−) = s and f(c+) = r. Thus, f(I) = I. Since

1

2
± 1

2

√
3 /∈ I, no valid starting point can converge to those values. Thus, any sequence

that converges must converge to
1

2
.

The initial value a0 =
1

2
leads trivially to a constant sequence that converges. The other

two solutions to f(x) =
1

2
lie outside I. The other possibility is that the sequence converges

to
1

2
without actually obtaining that value. Let an =

1

2
+ ε, so that an+1 =

1

2
− 2ε+ 4ε3.

Assume that |ε| < 1

4
, so that |1

2
− an+1| = 2|ε||1− 2ε2| > 7

4
|ε| > |ε|. Since the sequence

diverges from
1

2
, there are no other converging sequences. The only possible starting value

is a0 =
1

2
.
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