PROBLEM OF THE WEEK

Solution of Problem No. 7 (Spring 2010 Series)

Problem: If m, n are positive integers such that

$$
(m+1)^{3}-m^{3}=n^{2},
$$

show that

$$
n=k^{2}+(k+1)^{2}
$$

for some integer k.

Solution (by Richard Eden, Graduate student, Math, Purdue University)
Since $n^{2}=(m+1)^{3}-m^{3}=3 m^{2}+3 m+1$, then

$$
4 n^{2}-1=12 m^{2}+12 m+3=3(2 m+1)^{2}
$$

If p is prime and $p \mid(2 m+1)^{2}$, then $p \mid 2 n+1$ or $p \mid 2 n-1$, but p cannot divide both $2 n+1$ and $2 n-1$. Otherwise, $p \mid(2 n+1)-(2 n-1)=2$, which cannot be since $(2 m+1)^{2}$ is odd.

We now have two possible cases (a and b are integers): $2 n+1=a^{2}$ and $2 n-1=3 b^{2}$, or $2 n+1=3 a^{2}$ and $2 n-1=b^{2}$. The former case implies $2 n=a^{2}-1=3 b^{2}+1$ or $a^{2}=3 b^{2}+2 \equiv 2(\bmod 3)$, which is impossible since for any integer $a, a^{2} \equiv 0$ or 1 modulo 3.

Therefore, $2 n-1=b^{2}$ for some odd positive integer b. Let $k=\frac{b-1}{2}$. Then

$$
k^{2}+(k+1)^{2}=2 k^{2}+2 k+1=\frac{(2 k+1)^{2}+1}{2}=\frac{b^{2}+1}{2}=n .
$$

The problem was also solved by:

Undergraduates: Kilian Cooley (Fr.), Yixin Wang (Fr.)
Graduates: Tairan Yuwen (Chemistry)

Others: Neacsu Adrian (Romania), Gruian Cornel (IT, Romania), Tom Engelsman (Chicago, IL), Elie Ghosn (Montreal, Quebec), Steven Landy (IUPUI Physics staff), Wei-hsiang Lien (Grad student, National Chiao-Tung Univ., Taiwan), Sorin Rubinstein (TAU faculty, Israel), Craig Schroeder (Grad student, Stanford Univ.) Bill Wolber Jr. (ITaP)

