PROBLEM OF THE WEEK Solution of Problem No. 7 (Spring 2010 Series)

Problem: If m, n are positive integers such that

$$(m+1)^3 - m^3 = n^2,$$

show that

$$n = k^2 + (k+1)^2$$

for some integer k.

Solution (by Richard Eden, Graduate student, Math, Purdue University)

Since $n^2 = (m+1)^3 - m^3 = 3m^2 + 3m + 1$, then

$$4n^2 - 1 = 12m^2 + 12m + 3 = 3(2m + 1)^2.$$

If p is prime and $p|(2m+1)^2$, then p|2n+1 or p|2n-1, but p cannot divide both 2n+1and 2n-1. Otherwise, p|(2n+1) - (2n-1) = 2, which cannot be since $(2m+1)^2$ is odd.

We now have two possible cases (a and b are integers): $2n + 1 = a^2$ and $2n - 1 = 3b^2$, or $2n + 1 = 3a^2$ and $2n - 1 = b^2$. The former case implies $2n = a^2 - 1 = 3b^2 + 1$ or $a^2 = 3b^2 + 2 \equiv 2 \pmod{3}$, which is impossible since for any integer $a, a^2 \equiv 0$ or 1 modulo 3.

Therefore, $2n - 1 = b^2$ for some odd positive integer *b*. Let $k = \frac{b-1}{2}$. Then $k^2 + (k+1)^2 = 2k^2 + 2k + 1 = \frac{(2k+1)^2 + 1}{2} = \frac{b^2 + 1}{2} = n.$

The problem was also solved by:

<u>Undergraduates</u>: Kilian Cooley (Fr.), Yixin Wang (Fr.)

<u>Graduates</u>: Tairan Yuwen (Chemistry)

<u>Others</u>: Neacsu Adrian (Romania), Gruian Cornel (IT, Romania), Tom Engelsman (Chicago, IL), Elie Ghosn (Montreal, Quebec), Steven Landy (IUPUI Physics staff), Wei-hsiang Lien (Grad student, National Chiao-Tung Univ., Taiwan), Sorin Rubinstein (TAU faculty, Israel), Craig Schroeder (Grad student, Stanford Univ.) Bill Wolber Jr. (ITaP)