PROBLEM OF THE WEEK

Solution of Problem No. 13 (Spring 2011 Series)

Problem: Suppose $P(x)$ is a real polynomial of degree $k \geq 1$. Show that the power series expansion for $f(x)=e^{P(x)}$ about any point x_{0}, cannot have k consecutive zero coefficients.

Solution: (by Sorin Rubinstein, TAU faculty, Israel)

Suppose that the power series expansion

$$
y=e^{P(x)}=e^{P\left(x_{0}\right)}+P^{\prime}\left(x_{0}\right) e^{P\left(x_{0}\right)}\left(x-x_{0}\right)+\cdots
$$

of $y=e^{P(x)}$ about x_{0} has k consecutive 0 coefficients. Then, since $e^{P\left(x_{0}\right)} \neq 0$, there exists some nonzero polynomial $Q(x)$ such that
$y=Q(x)+\left(x-x_{0}\right)^{n+k+1} S(x)$ where $n=\operatorname{deg}(Q(x))$ and $S(x) \in C^{\infty}(R)$.
We plug this form into the evident relation $y^{\prime}=P^{\prime}(x) y$ and obtain:
$Q^{\prime}(x)+(n+k+1)\left(x-x_{0}\right)^{n+k} S(x)+\left(x-x_{0}\right)^{n+k+1} S^{\prime}(x)=P^{\prime}(x) Q(x)+P^{\prime}(x)\left(x-x_{0}\right)^{n+k+1} S(x)$

Thus

$$
\begin{equation*}
P^{\prime}(x) Q(x)-Q^{\prime}(x)=\left(x-x_{0}\right)^{n+k} T(x) \tag{1}
\end{equation*}
$$

where $T(x)=(n+k+1) S(x)+\left(x-x_{0}\right)\left(S^{\prime}(x)-P^{\prime}(x) S(x)\right) \in C^{\infty}(R)$. But this is impossible since the left hand side of the identity (1), a non-zero polynomial of degree $n+k-1$, cannot have a zero of multiplicity $n+k$.

The problem was also solved by:

Undergraduates: Kaibo Gong (Math), Yixin Wang (So. ECE)

Others: Neacsu Adrian (Romania), Hongwei Chen (Christopher Newport U. VA), Tom Engelsman (Chicago, IL), Elie Ghosn (Montreal, Quebec), Steven Landy (IUPUI Physics staff), Denes Molnar (Physics, Assistant Professor)

