PROBLEM OF THE WEEK Solution of Problem No. 10 (Spring 2012 Series)

Problem: Let f be a continuous function on the unit circle which has average value one, that is if θ is as in polar coordinates then $\int_{0}^{2\pi} f(\cos(\theta), \sin(\theta)) d\theta = 2\pi$. Show there is an arc of the unit circle of length less than 2π such that the average value of f on the arc is one.

Solution 1: (by Craig Schroeder, Post doc, UCLA)

Let

$$g(\phi) = \int_{\phi}^{\phi+\pi} f(\cos(\theta), \sin(\theta)) \, d\theta.$$

Then, $g(\phi) + g(\phi + \pi) = 2\pi$ for all ϕ . It suffices to show that $g(\phi) = \pi$ for some ϕ . Assume WLOG that $g(0) > \pi$, so that $g(\pi) < \pi$. Finally, the results follows from continuity of g and the mean value theorem.

Solution 2: (by Seongjun Choi, Sr. Math, Purdue University)

Let
$$F(x) = \int_0^x f(\cos\theta, \sin\theta)d\theta$$
. If $F(x) = x$ for all x in $[0, 2\pi]$ then any arc will do.

If not, any straight line of slope 1 which is not the line y = x and which contains a point (r, k) such that either r < k < F(r) or F(r) < k < r will intersect the graph of F at at least two points $(r_1, F(r_1))$ and $(r_2, F(r_2))$. For $0 < r_1 < r_2 < 2\pi$, since F(0) = 0 and $F(2\pi) = 2\pi$. In this case $F(r_2) - F(r_1) = r_2 - r_1$, and the arc $r_1 \le \theta \le r_2$ will do.

The problem was also solved by:

<u>Graduates</u>: Dat Tran (Math)

<u>Others</u>: Hongwei Chen (Faculty, Christopher Newport U. VA), Gruian Cornel (Cluj-Napoca, Romania), Hubert Desprez (Paris, France), Elie Ghosn (Montreal, Quebec), Steven Landy (Physics Faculty, IUPUI), Wei-hsiang Lien (Research assistant, National Chiao-Tung Univ., Taiwan), Sorin Rubinstein (TAU faculty, Israel), Steve Spindler (Chicago)