
PROBLEM OF THE WEEK

Solution of Problem No. 7 (Spring 2012 Series)

Problem: Suppose that for every (including the empty set and the whole set)

subset X of a finite set S there is a subset X∗ of S and suppose that if X is

a subset of Y then X∗ is a subset of Y∗. Show that there is a subset A of S

satisfying A∗ = A.

Solution 1: (by Sorin Rubinstein, Tel Aviv, Israel)

We define a sequence of subsets of S by: S0 = φ and for every non-negative integer n,

Sn+1 = S∗

n. Since, clearly, S0 ⊆ S1 and Sk ⊆ Sk+1 ⇒ S∗

k
⊆ S∗

k+1 ⇒ Sk+1 ⊆ Sk+2 this

is an increasing sequence: S0 ⊆ S1 ⊆ S2 ⊆ · · · ⊆ Sn ⊆ · · · of subsets of the finite set S.

Hence there must exist an index n such that Sn = Sn+1. We define A = Sn. This ensures

that A∗ = S∗

n = Sn+1 = Sn = A.

Solution 2: (by Sorin Rubinstein, Tel Aviv, Israel)

The condition that S is finite is not necessary and will not be used in this

solution.

Let us define the set Ω = {V ⊆ S : V ⊆ V ∗}. Clearly φ ∈ Ω. We also define the set

A =
⋃

V ∈Ω
V . If V ∈ Ω, then V ⊆ A, which leads to V ∗ ⊆ A∗ and since also V ⊆ V ∗,

to V ⊆ A∗. Since this is true for every V ∈ Ω, it follows that A =
⋃

V ∈Ω
V ⊆ A∗.

Moreover, from A ⊆ A∗ it follows that A∗ ⊆ (A∗)∗. Then, A∗ ∈ Ω and, consequently,

A∗ ⊆
⋃

V ∈Ω
V = A. Finally, from A ⊆ A∗ and A∗ ⊆ A follows that A = A∗.
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