
PROBLEM OF THE WEEK

Solution of Problem No. 11 (Spring 2013 Series)

Problem:

Let c0 > 0, c1 > 0, and cn+1 =
√

cn +
√

cn−1, n ≥ 1.

Show that lim
n→∞

cn exists and find this limit.

Solution: (by Julien Bureaux, Paris, France)

Let c0 > 0, c1 > 0, and

cn+1 =
√

cn +
√

cn−1, n ≥ 1 (1)

Show that lim
n→∞

cn exists and find this limit.

We will prove that

lim sup cn ≤ 4 ≤ lim inf cn (2)

First remark that the sequence bn = max{4, cn, cn−1} is non-increasing. Indeed, the trivial

lower bound bn ≥ 4 yields cn+1 ≤ 2
√

bn ≤ bn; we conclude with

bn+1 = max{4, cn+1, cn} ≤ max{4, bn, bn} = bn. As a consequence, an upper bound for cn

is max{4, c0, c1}. In the same way, cn ≥ min{4, c0, c1}.

These bounds show that both lim inf cn and lim sup cn lie in (0,∞). Furthermore we deduce

from (1) that

lim inf cn ≥ 2
√

lim inf cn, lim sup cn ≤ 2
√

lim sup cn

This proves (2), hence the result.
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Christopher Nelson (PostDoc, UCSD), Paolo Perfetti (Roma, Italy), Craig Schroeder

(Postdoc. UCLA), Steve Spindler (Chicago), Chris Willy (Adjunct faculty, George Wash-

ington Univ.)


