PROBLEM OF THE WEEK
Solution of Problem No. 11(Spring 2014 Series)

Problem:
Show that if f is infinitely differentiable on $(-1,1)$ and $f\left(\frac{1}{n}\right)=0$ for all $n>1$ then $f^{(k)}(0)=0$ for all $k>0$.

Solution: (by Hubert Desprez, Paris, France)

First we show by induction that for each k, there is a decreasing sequence $\left(x_{n}\right)$ such that $x_{n} \rightarrow 0$ and for each $n, f^{(k)}\left(x_{n}\right)=0$, readily true for $k=0$, suppose it is true for k; the MVT says that there is an y_{n}, with

$$
\left\{\begin{array}{l}
0=f^{(k)}\left(x_{n+1}\right)-f^{(k)}\left(x_{n}\right)=\left(x_{n+1}-x_{n}\right) f^{(k+1)}\left(y_{n}\right) \quad \text { which concludes } \\
x_{n+1}<y_{n}<x_{n}
\end{array}\right.
$$

now by continuity: $f^{(k)}(0)=f^{(k)}\left(\lim _{n \rightarrow \infty} y_{n}\right)=\lim _{n \rightarrow \infty} f^{(k)}\left(y_{n}\right)=0$.

The problem was also solved by:

Undergraduates: Bennett Marsh (Jr. Physics \& Math)
Graduates: Tairan Yuwen (Chemistry)
Others: KD Harald Bensom (Germany), Marco Biagini (Math Teacher, Italy), Charles Burnette (Grad Student, Drexel Univ.), Adam Chehouri (PhD Student, Quebec, Canada), Gruian Cornel (Cluj-Napoca, Romania), Ghasem Esmati (Sharif Univ. of Tech), Boughami Mohamed Hedi (Teacher, Tunisia), Chris Kennedy (Professor, Christopher Newport Univ, VA), Peter Kornya (Retired Faculty, Ivy Tech), Steven Landy (Physics Faculty, IUPUI), Wei-Xiang Lien (Miaoli, Taiwan), Patrick Lutz (Fr. University of CA, Berkeley), Tomer Manket (Student, Bar Ilam U, Israel), Perfetti Paolo (Roma, Italy), Esmaeil Parsa (Lecturer, Iran), Joel Rosenfeld (Postdoc, U of Florida), Achim Roth (Data Protection Officer, Germany), Sorin Rubinstein (TAU faculty, Tel Aviv, Israel), Craig Schroeder (Postdoc. UCLA), Shin-ichiro Seki (Graduate Student, Osaka University), David Stigant, David Stoner (HS Student, Aiken, S. Carolina)

