PROBLEM OF THE WEEK

Solution of Problem No. 13(Spring 2014 Series)

Problem:

An airplane flies at constant airspeed c directly above a closed polygonal path in a plane, completing one circuit. Show that, compared to no wind, the presence of a wind of constant speed $k<c$ and constant direction will increase the time required.

Solution: (by Tin Lam, Engineer, St. Louis, MO)

Suppose each side of the closed polygonal path is of distance s_{i} and that $\ell=\sum_{i} s_{i}$ is the length of 1 circuit. Let \vec{w} be the wind vector, with $|\vec{w}|=k$. Let $\overrightarrow{v_{i}}$ be the velocity vector of the plane on the i-th side of the closed polygonal path with $\left|\overrightarrow{v_{i}}\right|=c$. The ground velocity vector $\overrightarrow{g_{i}}$ is given by $\overrightarrow{g_{i}}=\overrightarrow{v_{i}}+\vec{w}$. Let $d_{i}=\left|\overrightarrow{g_{i}}\right|$ and \hat{g}_{i} be the unit vector with the same direction as $\overrightarrow{g_{i}}$. Then, $\overrightarrow{g_{i}}=d_{i} \hat{g}_{i}$. Therefore, we have $\overrightarrow{v_{i}}+\vec{w}=\overrightarrow{g_{i}}=d_{i} \hat{g}_{i}$, or $\overrightarrow{v_{i}}=d_{i} \hat{g}_{i}-\vec{w}$. If we take the dot product with itself, we have:

$$
c^{2}=\vec{v}_{i} \cdot \vec{v}_{i}=d_{i}^{2}-2 d_{i} \vec{w} \cdot \hat{g}_{i}+|\vec{w}|^{2}=d_{i}^{2}-2 d_{i} \vec{w} \cdot \hat{g}_{i}+k^{2} .
$$

We have a quadratic in d_{i}, namely, $d_{i}^{2}-d_{i}\left(2 \vec{w} \cdot \hat{g}_{i}\right)+\left(k^{2}-c^{2}\right)=0$. Using the quadratic formula, we have:

$$
d_{i}=\vec{w} \cdot \hat{g}_{i} \pm \sqrt{\left(\vec{w} \cdot \hat{g}_{i}\right)^{2}+\left(c^{2}-k^{2}\right)}
$$

Since $c>k$, we can ignore the case where \pm is negative as $d_{i}<0$. Since d_{i} is the ground speed of the plane, we have that:

$$
\begin{aligned}
t_{\text {wind }} & =\sum_{i} \frac{s_{i}}{\vec{w} \cdot \hat{g}_{i}+\sqrt{\left(\vec{w} \cdot \hat{g}_{i}\right)^{2}+\left(c^{2}-k^{2}\right)}}=\sum_{i} \frac{s_{i} \vec{w} \cdot \hat{g}_{i}-s_{i} \sqrt{\left(\vec{w} \cdot \hat{g}_{i}\right)^{2}+\left(c^{2}-k^{2}\right)}}{\left(\vec{w} \cdot \hat{g}_{i}\right)^{2}-\left(\left(\vec{w} \cdot \hat{g}_{i}\right)^{2}+\left(c^{2}-k^{2}\right)\right)} \\
& =\sum_{i} \frac{s_{i} \vec{w} \cdot \hat{g}_{i}-s_{i} \sqrt{\left(\vec{w} \cdot \hat{g}_{i}\right)^{2}+\left(c^{2}-k^{2}\right)}}{k^{2}-c^{2}}=\sum_{i} \frac{s_{i} \vec{w} \cdot \hat{g}_{i}}{k^{2}-c^{2}}+\sum_{i} \frac{s_{i} \sqrt{\left(\vec{w} \cdot \hat{g}_{i}\right)^{2}+\left(c^{2}-k^{2}\right)}}{c^{2}-k^{2}} \\
& \geq \frac{1}{k^{2}-c^{2}} \sum_{i} s_{i} \vec{w} \cdot \hat{g}_{i}+\sum_{i} \frac{s_{i} \sqrt{c^{2}-k^{2}}}{c^{2}-k^{2}}=\frac{1}{k^{2}-c^{2}} \sum_{i} s_{i} \vec{w} \cdot \hat{g}_{i}+\frac{1}{\sqrt{c^{2}-k^{2}}} \sum_{i} s_{i} .
\end{aligned}
$$

Note that $\sum_{i} s_{i} \vec{w} \cdot \hat{g}_{i}=k \sum_{i} s_{i} \cos \theta$ where θ is the angle between each side (as a vector) and \vec{w}. However, since the direction of \vec{w} is constant, this is just the \vec{w}-component of the vector path, and since it is closed, we know $\sum_{i} s_{i} \cos \theta=0$.

We have

$$
t_{\mathrm{wind}} \geq \frac{1}{\sqrt{c^{2}-k^{2}}} \sum_{i} s_{i}=\frac{\ell}{\sqrt{c^{2}-k^{2}}}>\frac{\ell}{c}=t_{\mathrm{no} \text { wind }}, \text { when } k>0
$$

The problem was also solved by:
Undergraduates: Bennett Marsh (Jr. Physics \& Math)
Graduates: Tairan Yuwen (Chemistry)
Others: Tim Clark (U of Minnesota Alumni, Duluth, MN), Hubert Desprez (Paris, France), Benjamin Phillabaum (Visiting Scholar, Physics, Purdue)

