
PROBLEM OF THE WEEK

Solution of Problem No. 2 (Spring 2014 Series)

Problem:

It is known that, for any positive integer m,
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Prove this for m = 2.

Solution 1: (by Yucheng Chen, College of Engineering, Purdue University)

According to binomial theorem:
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Solution 2: (by Steven Landy, Physics Faculty, IUPUI)

The case m = 2 is the familiar fact that in each row of Pascal’s triangle the even terms

and odd terms have the same sums. We will show the general case. First we note that the

restriction km ≤ n, is unnecessary since the binomial coefficient is zero if it is not true.

The denominator is
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To calculate the numerator, let θ = 2π/m, and let α = eiθ. Now consider the binomials

(1 + α)n, (1 + α2)n, . . . (1 + αm)n. When these are expanded in binomial coefficients and

then added, only the terms with coefficients of the form
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Using (1), (2) and (3) we find that
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We can see that q goes to zero for large n, giving x =
1

m
.
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